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ABSTRACT

Clinically healthy horses were instrumented to measure hemodynamic, 

metabolic, hematologic, and serum biochemical variables and monitor clinical signs 

during and after IV infusion of ATP-MgCl2. Conscious horses were administered ATP- 

MgCl2 (0.05 mg ATP/kg body weight/min; 0.05 mg/kg/min increments; maximum rate 

-1.0 mg/kg/min), which caused a rate-dependent increase in cardiac output, decrease in 

systemic vascular resistance, and mild pulmonary hypertension. The maximal safe 

infusion rate was 0.3 mg ATP/kg body weight/min. Anesthetized horses administered 

ATP-MgCl2(0.l to 1 mg/kg/min; 0.1 mg/kg/min increments) developed a rate- 

dependent decrease in systemic and colonic vascular resistance via vasodilatation. In 

conscious horses administered low-dose endotoxin, ATP-MgCl2 (dose - 100 pmole/kg 

ATP and 100 pmole/kg MgCl2; rate - 0.3 mg/kg/min) failed to attenuate the clinical, 

hemodynamic, metabolic, and hematologic alterations that occur secondary to endotoxin 

exposure; ATP-MgCI2 infusion appeared to potentiate pulmonary hypertension, 

leukopenia, and neutropenia observed with endotoxin.

Based on the results of the in vivo studies, the effects of ATP on vasomotor tone 

of isolated equine colonic arterial and venous rings were studied. Non-cumulative dose 

response curves of vessel rings from normal horses to ATP (10'8 to 10‘3 M) were 

generated in the presence and absence of endothelium and in the presence of a non­

specific nitric oxide synthase inhibitor, L-NAME (10-4 M). ATP caused a biphasic 

response at high doses (lO*4 and 10'3 M) in both vessel types, an initial transient 

contraction followed by a slow, substantial and sustained relaxation, which was

xvi
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attenuated with endothelium removal. The endothelium-dependent relaxation 

component was mediated by a mechanism other than nitric oxide.

A method to quantify adenine nucleotides in equine colonic mucosa was 

validated. Adenine nucleotides were stable in lyophilized tissue stored at -70 C for at 

least 54 days. Effects of an electron transport inhibitor (antimycin A) on mucosal 

nucleotides was determined in a whole tissue model. In the presence of glucose and 

oxygen, ATP was stable for up to 4 hrs, but ADP and AMP decreased. In the absence 

of glucose, ATP remained stable for only 3 hrs. Antimycin A (50 pM) caused a time- 

dependent, irreversible decrease in adenine nucleotides.

xvii
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CHAPTER 1. INTRODUCTION/REVIEW OF LITERATURE

1
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1.1 Introduction

Acute gastrointestinal tract disease is the leading natural cause of death in adult 

horses. Strangulating volvulus of the ascending colon is a common cause of 

gastrointestinal tract ischemia and is associated with substantial morbidity and 

mortality. Loss of fluid into the peritoneal cavity and intestinal lumen leads to 

hypovolemia. Additionally, splanchnic ischemia causes mucosal barrier disruption and 

transmural migration of bacteria and endotoxin into the systemic circulation. The 

combination of endotoxemia and hypovolemia causes profound alterations in the 

circulatory system with the development of circulatory shock. If left untreated, affected 

animals will progress to multiple organ failure and death.

Adenosine triphosphate (ATP) is the principal immediate donor of free energy 

for mammalian cells. Additionally, ATP and its catabolites, have profound effects on 

vasomotor tone via interaction with specific purinergic receptors. During tissue 

ischemia and shock, endogenous production of ATP is decreased, which can 

profoundly alter the microcirculation, cell membrane transport and function and cellular 

energy metabolism.

Administration of a combination of ATP and magnesium chloride (ATP-MgCy 

has been demonstrated to alter vasomotor tone by producing vasodilatation, thereby 

potentially enhancing blood flow, microcirculation and tissue perfusion. Additionally, 

ATP-MgCl2 has been shown to improve tissue ATP content, organ function, and down- 

regulate the synthesis of cytokines and inflammatory mediators. However, the efficacy 

o f ATP-MgCl2 during gastrointestinal tract disease and endotoxemia in horses is not 

known.
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1.2 Circulatory Shock

Despite many advances in cardiovascular support therapy, circulatory shock 

remains an important cause of death in both humans and domestic animals. Circulatory 

shock can be defined as “a general inadequacy of blood flow to tissues relative to their 

metabolic demands” (1). If circulatory shock is inadequately managed, the result is 

multiple organ failure, particularly the lung and splanchnic organs, and ultimately death 

(1).

Two main classification systems have been proposed to categorize circulatory 

shock. The first classification system ascribes the pathologic events to the initiating 

insult, such as hemorrhage, trauma, sepsis, and myocardial infarction (1). The second 

classification system groups the insult according to the character of the predominant 

circulatory disturbance: cardiogenic, obstructive, hypovolemic, and distributive (2,3).

The most common forms of shock observed in the horse are hypovolemic and 

distributive (4). Hypovolemic shock refers to a loss of intravascular volume associated 

with the loss of whole blood, plasma, or largely protein-free fluid through sweat, 

diarrhea, or urine (1). The principal alterations that occur during non-hemorrhagic 

hypovolemic shock include arterial vasoconstriction, decreased venous pressure, 

hemoconcentration, tachycardia and oliguria (S). Because of the decrease in vascular 

filling volume, venous return to the heart decreases, with a subsequent decrease in 

cardiac output (CO), arterial flow, and arterial pressure (1).

Distributive shock refers to an expansion of the vascular space owing to regional 

or generalized loss of vascular tone (1). Principal causes of distributive shock include 

sepsis, neurologic disturbance, anaphylaxis or metabolic, toxic or endocrinologic
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depression of vasomotor tone (5). A common feature of distributive shock is 

inappropriate vasodilatation, which leads to maldistribution of vascular volume and 

impaired organ perfusion (S). In some forms of distributive shock, such as during the 

early stages of septic shock, CO and total organ blood flows may be increased, but at the 

microvascular level, there may be failure to match blood flow to local parenchymal 

demands, which leads to tissue hypoxia and dysfunction (1).

From a clinical perspective, many diseases fit into more than one classification 

system. For example, gastrointestinal tract ischemia associated with equine colic leads 

to hypovolemic shock owing to loss of peritoneal and intestinal luminal fluid (1). When 

gastrointestinal mucosal barrier disruption occurs secondary to ischemia, transmural 

migration of bacteria and endotoxin into the portal and systemic circulations will lead to 

distributive shock (1). In adult horses, the most common cause of distributive shock is 

endotoxemia, which principally occurs secondary to splanchnic ischemia associated 

with acute strangulating and nonstrangulating intestinal disease (1).

When endotoxin enters the portal and systemic circulations, it can induce an 

inflammatory response via both direct and indirect mechanisms. Endotoxin can directly 

activate the complement, coagulation and fibrinolytic cascades (6-10). Indirect 

mechanisms include activation of numerous cell types, such as lymphocytes, 

neutrophils, endothelial cells, platelets and mononuclear cells, which perpetuate the 

inflammatory response (11).

When mononuclear cells are activated by endotoxin, they liberate cytokines, 

principally tumor necrosis factor (TNF), interleukin (IL)-l, and IL-6 (12). Cytokines are 

small (8-30 k£>), intercellular messenger polypeptides that are active at low
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concentrations (12). Cytokines possess growth-promoting, proinflammatory or anti­

inflammatory effects. The primary proinflammatory cytokines include IL-1, IL-8 and 

TNF (12). When produced in excess, the primary cytokines initiating adverse effects 

are IL-1 and TNF (13-17). The principal effects of these cytokines are diffuse 

microvascular plugging secondary to activation of the coagulation system (9), loss of 

vascular autoregulation, and increased vascular permeability (18).

The primary anti-inflammatory cytokines are EL-10, IL-6, IL-lra and 

transforming growth factor (TGF)-P (12). In the course of overwhelming inflammation, 

these natural anti-cytokine mediators are produced in insufficient quantities to be 

capable of effectively containing the insult (12).

Tumor necrosis factor is referred to as “THE shock cytokine” (12). There are 3 

members o f the TNF gene family: TNF-a, TNF-P, and Iymphotoxin-P (19-23). The 

pathogenic role of TNF-a is well-documented (24). It is a 17 kD polypeptide released 

principally by activated macrophages in response to lipopolysaccharide (LPS) (14,25). 

This cytokine increases rapidly and peaks at 60-90 minutes after endotoxin exposure 

(12). The principal activities of TNF-a include induction of other cytokines such as IL- 

1, IL-4 and IL-6; activation of T cells; endogenous pyrogen activity, induction of 

endothelial cell surface antigens and procoagulation activity; eicosanoid synthesis; 

activation of osteoclastic bone resorption; inhibition of bone collagen synthesis; 

induction of acute-phase reactant synthesis and granulocyte/monocyte stimulating 

factor; and inhibition of enzymes involved in lipid metabolism (26-28). In neutrophils, 

TNF-a stimulates activation of the respiratory burst, degranulation and adherence to
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vascular endothelium (29). Additionally, TNF-a can cause myocardial depression, 

hypercoagulability, hypotension and death (12).

Interleukin-6 is a phosphoglycoprotein molecule synthesized by numerous cell 

types in response to various stimuli, including endotoxin, IL-1, and TNF-a (30). It 

peaks at 120-180 minutes following exposure to endotoxin and possesses both anti- and 

proinflammatory activities (12). It functions as a suppressor of proinflammatory 

cytokine production, a pyrogen, and an initiator of the acute-phase response (12). Since 

IL-6 circulates in high concentrations, it is the best cytokine marker of inflammatory 

disease activity (12).

Interleukin-1 is generated primarily by mononuclear phagocytes (31). It 

possesses many of the same biological activities of TNF-a, peaks at 180 minutes after 

exposure to endotoxin, and can stimulate the synthesis and release production of TNF- 

a,IL-8, and IL-6 (12,32).

Secretion of cytokines, most notably IL-1 and TNF-a, affect the temperature set- 

point, vascular resistance and permeability, cardiac function, bone marrow and enzyme 

systems (12). Many effects of cytokines are mediated at the target tissues by other 

inflammatory mediators, such as nitric oxide (NO) and eicosanoids (12). IL-1 and TNF- 

a  stimulate elaboration of other cytokines, which then amplify and modulate the 

cytokine response (33,34).

Other inflammatory mediators produced during endotoxic shock include 

arachidonic acid metabolites (prostaglandins, thromboxanes, and leukotrienes), platelet 

activating factor, NO, endothelin-1 (ET-1), proteases, and reactive oxygen species
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(11,12,35-39). These various mediators can profoundly affect vasomotor tone, 

coagulation, and leukocyte-endothelial interactions.

When neutrophils are exposed to endotoxin and other inflammatory mediators, 

they undergo functional alterations and release proteolytic enzymes (40) and reactive 

oxygen radicals (41), which cause local endothelial and tissue injury. Endotoxin and 

TNF stimulate neutrophil migration (42) and endothelial adhesion via up-regulation of 

expression of adhesion molecules on the cell surface of both neutrophils and endothelial 

cells (42-44). Additionally, neutrophil deformability decreases, which favors additional 

sequestration in the microvasculature (45,46).

Vascular endothelium is one of the target organs that is adversely affected during 

endotoxic shock (47,48). Release of tissue thromboplastin and exposure of 

subendothelial collagen that occurs secondary to endothelial cell damage activates both 

the extrinsic and intrinsic coagulation cascades (31). Endotoxin causes both structural 

and metabolic changes in endothelial cells and increases permeability of the endothelial 

cell layer (49). Additionally, release of endothelium-derived mediators, such as NO, ET- 

1, and prostaglandins, contribute to the inflammatory and hemodynamic derangements 

that occur during endotoxic shock.

During the initial stages of shock (hyperdynamic phase), myocardial contractility 

and heart rate increase and peripheral vasoconstriction occurs (5). These hemodynamic 

alterations occur secondary to sympathetic activation in an attempt to maintain blood 

pressure and increase vital organ perfusion by redistributing flow away from skin, 

skeletal muscle, and renal and splanchnic beds (5). Activation of the renin-angiotensin 

system leads to additional vasoconstriction and increases in vascular volume due to
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- * ,
sodium retention (5). Numerous other mediators are released in an attempt to maintain 

an energy source for cells and intravascular volume to maintain blood flow (S).

An early consequence of decreased oxygen availability during shock is a 

reduction in cellular ATP content (5). When tissue oxygen tension decreases to a 

critical level, oxidative phosphorylation is uncoupled and ATP production gradually 

ceases (SO). Depletion of ATP ultimately leads to mitochondrial swelling, cell 

membrane deterioration, abnormalities in cellular calcium flux, intracellular 

accumulation o fN a\ Ca**, and water, and lactic acidosis (5). In an attempt to offset the 

changes that occur with decreased ATP content, administration of ATP-MgCl2 has been 

shown to attenuate some of the adverse metabolic alterations that occur during shock 

(SO) (Refer to section on ATP-MgCl2for additional information).

Among adult horses, particularly if shock is associated with splanchnic 

ischemia, many of the early hyperdynamic events are not observed (1). During the later 

stages o f shock (hypodynamic phase), the alterations that occur in horses are similiar to 

humans and other species. Hypovolemia develops secondary to arterial and venous 

dilatation and leakage of plasma into the extravascular space (51,52). Initially, despite a 

normal or increased CO, ventricular function is abnormal leading to reduction in the 

ejection fraction (52,53). The hypovolemia and vasodilatation decreases systemic 

vascular resistance (SRJ, and there is decreased peripheral use of oxygen and other 

nutrients by the cells (54-56). Perfusion may be normal or decreased but cellular 

metabolism is decreased (52). Maldistribution of blood flow occurs due to constriction 

of some vascular beds and vasodilatation of others (52). Enhanced leukocyte adherence 

(53,57,58) and neutrophil and platelet aggregation can lead to a further decrease in
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blood flow owing to microvascular plugging (59). Additionally, increased intravascular 

coagulation occurs (56-58). Eventually multiple organ failure develops (52,56). If the 

hemodynamic derangements are not reversed, death ultimately ensues.

In horses, injection of lethal (50-200 |lg/kg) and sublethal (10-40 |ig/kg) doses 

of endotoxin causes a decrease in systemic arterial pressure (SAP) and CO and an 

increase in right atrial pressure, pulmonary artery pressure (PAP) and pulmonary 

vascular resistance (PRJ (60-63). The decreased CO output likely is associated with 

depressed cardiac mechanical function, decreased venous return, increased PRL or a 

combination (64-66). Splanchnic vasoconstriction occurs as part o f the compensatory 

response to endotoxemia (66,67). Intestinal vasoconstriction has been documented in 

other species administered low-dose endotoxin (6 8 ).

The three main goals during the treatment of circulatory shock are: restoration of 

organ perfusion; control or reversal of the initiating cause; and prevention or 

management o f the complications associated with shock (5). The first and most 

important therapeutic goal is restoration of blood volume (69). The initial aim is to 

restore organ perfusion in order to provide adequate oxygen delivery to the tissues to 

meet their metabolic needs (5). Restoration of arterial blood pressure, vascular volume 

and CO is of paramount importance in supporting tissue oxygenation (5). Frequently, 

patients have maldistributed blood flow with decreased intravascular volume but with 

increased interstitial water (70-73). Therapy should be aimed at improving circulatory 

function by restoring plasma volume, not by overloading an already expanding 

interstitial space (69).
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Blood volume expansion is the most important element of therapy for circulatory 

shock (5). The easiest and most effective method to achieve intravascular volume 

expansion is with colloids, which expands plasma volume without overexpanding 

interstitial water (73-78). Plasma is the most effective colloid (5). Its effects are long- 

lasting and if fresh or fresh frozen plasma is used, it also provides clotting factors (S). If 

blood loss and hemodilution cause a significant decrease in oxygen-carrying capacity, 

whole blood is indicated (5). The use of dextrans (high molecular weight 

polysaccharides) or other synthetic colloid volume expanders, such as hydroxyethyl 

starch, are helpful in the absence of plasma (S).

Crystalloids can also provide blood volume expansion. However, when they are 

used, large fluid replacement volumes are required because only 25 to 30% of the 

crystalloid solution remains in the vascular space 30 minutes following administration 

(79). Because of the rapid diffusion from the vascular space, further fluid 

administration in the form of colloids may be needed if hypotension or vasoconstriction 

persists (5). Interstitial edema may develop, which can subsequently cause disturbances 

in organ function, especially the lung and splanchnic organs (80). The use of fluids high 

in sodium, such as 0.9% NaCl (sodium chloride), help maintain the fluid in the 

extracellular and intravascular space (5).

Measurement of central venous pressure (CVP) and pulmonary wedge pressure 

(PWP) are useful to determine the capacity of the vascular system to accept more 

volume without producing pulmonary edema and to prevent acute blood volume 

overload during rapid fluid restoration. Although CVP and PWP may accurately 

measure venous pressures, they do not accurately reflect blood volume in most patients.
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The distribution of body water between plasma, interstitium and intracellular 

compartments can only be definitively measured using isotopic body composition 

studies (70-72).

In horses, the goal during volume replacement is to maintain a mean arterial 

pressure (MAP) of 80 mm Hg or greater and a CVP between 10-15 cm H2 0 . A rapid 

increase in CVP may indicate too rapid hydration in the face of cardiac dysfunction.

The use of hypertonic or hyperoncotic fluids during circulatory shock in horses will 

transiently shift fluid from the extravascular, extracellular space to the vascular space, 

thereby expanding plasma volume. The effect is temporary because the high 

concentrations of intravascular sodium and chloride ions rapidly traverse the vascular 

bed into the interstitium, returning fluid to the interstitial compartment. Therefore, 

administration of crystalloids or colloids along with hypertonic or hyperoncotic fluids is 

vital to keep the fluids in the intravascular space ( 1 ).

Under normal circumstances, the plasma acid-base status is maintained by 

plasma bicarbonate (HC0 3*) and protein buffering systems, with acute respiratory and 

longer-term renal adjustments. Many cases of metabolic acidosis associated with 

circulatory shock will self-correct after adequate intravascular volume replacement has 

been effectively achieved (I).

The use of antimicrobial agents does not alter survival rate in endotoxic animals 

(81) but endotoxemia has been shown to cause translocation of bacteria from the 

gastrointestinal tract to other organs (82). Severe, protracted hypovolemic shock has 

been associated with impaired splanchnic perfusion with subsequent mucosal barrier
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disruption and bacterial translocation (83). Therefore, the use of prophylactic broad- 

spectrum antimicrobial agents is advocated ( 1 ).

The use of inotropic and/or vasoactive drugs during circulatory shock may be 

warranted. If poor peripheral perfusion and low CO exists despite fluid therapy and 

CVP is increased, positive inotropic therapy should be initiated (5). Following volume 

expansion, the use of inotropic agents, such as dobutamine, may help achieve optimal 

cardiac index (Cl), oxygen delivery (DOj), and oxygen consumption (69). Dobutamine 

has been shown to cause a marked and significant increase in Cl and stroke index, 

cardiac and stroke work, and D0 2  and consumption. Additionally, dobutamine 

decreases SRl and PRl, CVP, and PWP (78,84,85). Vasodilatory agents, such as 

acepromazine, may be indicated if MAP is normal or increased and if there is a high 

SRl (69). If hypotension persists following volume expansion, the use of vasopressor 

agents may be warranted to maintain perfusion pressure (69).

The efficacy of corticosteroids to treat hypovolemic and septic shock has been 

extensively studied. Corticosteroids mediate multiple anti-inflammatory effects through 

alterations in gene transcription and translation (56). They significantly decrease the 

synthesis of TNF-a, which results in significant down-regulation of the inflammatory 

response (8 6 ). They increase the synthesis of lipocortin, a protein that inhibits 

phospholipase (PL) A2  activity and the formation of arachidonic acid-derived 

eicosanoids (56). There are many potential disadvantages associated with the use of 

corticosteroids for the treatment of sepsis (56). Profound immunosuppression results 

from decreased neutrophil chemotaxis, antigen-antibody complexing, and opsonization, 

thus leading to refractory or even secondary infections (56). Corticosteroid
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administration is reported to induce laminitis in some horses by potentiating 

catecholamine-induced digital vasoconstriction (87). This may particularly be important 

in patients that are already at risk of developing laminitis (56).

Early studies in experimental animal models demonstrated beneficial effects of 

corticosteroids during endotoxemia and septicemia (57). Clinical trials in humans did 

not show beneficial effects and sometimes showed adverse effects (8 8 ). Studies 

investigating the application of corticosteroids in equine endotoxemia have failed to 

show any therapeutic benefit (89,90). Additionally, most investigators agree that 

systemic corticosteroids are contraindicated as treatment for severe sepsis and septic 

shock in horses ( 1 ).

In horses with shock, the use of anti-inflammatory agents is indicated. Non­

steroidal anti-inflammatory drugs have been shown to have a protective effect during 

endotoxic and splanchnic-ischemia shock via modulation of arachidonic acid pathway 

mediators (91,92). Inhibition of cyclooxygenase results in decreased synthesis of 

prostaglandins and thromboxanes, thereby improving vascular and coagulation function 

(56). Leukotrienes contribute to hemodynamic, hematologic and pulmonary 

manifestations during shock (56). The beneficial effects of lipoxygenase-inhibiting 

drugs during shock have been demonstrated in other species but not in horses (56).

Finally, prevention of multiple organ failure is critical. Supplemental 

oxygenation via nasal insufflation may be necessary if arterial oxygen tension falls 

below 85 mm Hg due to risk of hemoglobin desaturation, which leads to tissue hypoxia 

(1). Additionally, renal and hepatic support is vital to help maintain water balance and 

prevent accumulation of toxic metabolites (5). The maintenance of intravascular fluid
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volume, glomerular filtration, and urine production is critical in the prevention of renal 

failure (93). Administration of intravenous (TV) fluids and maintenance of normal 

electrolytes is vital. If renal perfusion is diminished and the animal remains oliguric 10 

to 1 2  hours after starting fluid therapy, administration of dopamine may improve renal 

blood flow and urine output (93). The use of loop diuretics, such as furosemide, may be 

indicated to promote diuresis (93). Additionally, blocking the Na7K72Cl' co­

transporter in the kidney with loop diuretics may protect the renal tubule cells by 

reducing their metabolic rate (93).

Management techniques for hepatic insufficiency are supportive. Fluid deficit 

and acid-base or electrolyte imbalances should be corrected by intravenous fluids (94). 

Administration of agents to reduce the production of toxic protein metabolites by enteric 

bacteria or interfering with their absorption may be indicated. Mineral oil, oral 

administration of poorly absorbable antibiotics, or lactulose can be used (95-98). 

Additionally, rations high in carbohydrates and low in protein are recommended 

(94,97).

13 Equine Ascending Colon

The anatomy, physiology and pathophysiology of the equine ascending colon is 

complex. During disease, significant alterations in anatomical characteristics and 

physiological functions occur. Knowledge of normal gross and microscopic anatomy, 

as well as physiology of digestion, absorption and secretion, provides the foundation for 

understanding the mechanisms involved in disease processes.

The equine ascending colon is 3 to 4.5 meters in length with a capacity of 55 to 

130 liters (99,100). It forms a double horseshoe-shaped loop consisting of the right
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ventral, left ventral, left dorsal and right dorsal components (101). The sternal and 

diaphragmatic flexures are located at the cranial aspect of the ventral and dorsal loops, 

respectively (101). The pelvic flexure (PF) joins the left ventral and left dorsal 

segments caudally (101). The diameter of the ascending colon varies depending on the 

segment, with the right dorsal component being the largest (SO cm) (101). The colon 

has longitiudinal muscle bands, teniae coli, that vary in number depending on the 

segment and these bands form sacculations called haustra coli ( 1 0 1 ).

The proximal (right ventral colon [RVC]) and terminal (right dorsal colon 

[RDC]) regions of the ascending colon are attached to the dorsal aspect of the 

abdominal cavity by the ascending mesocolon (101). The vascular supply to the dorsal 

colon arises from the right colic artery, which is a branch of the cranial mesenteric artery 

(99,100,102). The ventral colon is supplied by the colic branch artery, which arises 

from the ileocolic artery (99,100,102). Both arteries are located in the colonic 

mesentery and travel parallel to the colon to anastomose at the pelvic flexure (99,102). 

The arteries branch from the colonic vessels every 2 cm and anastomose with vessels 

lying orally or aborally to form a colonic rete before continuing into the colonic tissue 

(102). The function of the colonic rete is unknown, but may provide collateral blood 

supply (103). Vessels enter the submucosa through the tunica muscularis to form a 

submucosal arteriolar plexus (102). Arterioles ascend from the submucosal plexus to 

the mucosa, where an extensive capillary network forms around the colonic glands 

(102). The submucosal venous plexus and sparsely distributed venules drain the 

capillary network ( 1 0 2 ).
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Histologically, the ascending colon has a thin mucosal layer with straight, 

shallow colonic glands separated by extensive lamina propria. Goblet cells are 

numerous. The outer muscularis externa is thickened into flat bands of smooth muscle 

and elastic fibers, the taenia coli. Elastic fibers predominate over muscle in the taenia 

coli. A thin, single-layered muscularis mucosa is present, and villi are absent. Scattered 

lymphoid nodules are evident. The cells lining colonic glands, in addition to goblet 

cells, are granular cells ( 1 0 1 ).

The equine ascending colon does not possess mucosal enzymes or an active 

transport mechanism for hexoses, amino acids or B vitamins (104). The primary 

function of the large intestine in adult horses is the production and absorption of volatile 

fatty acids (VFAs) via microbial digestion of soluble and insoluble carbohydrates (105). 

Up to 75% of energy requirements are met by products of microbial fermentation of 

carbohydrates in the cecum and ascending colon (106). Additionally, the large intestine 

secretes a volume of fluid equal to the extracellular fluid volume and recovers 

approximately 90 to 95% of it every 24 hours (107).

The normal colonic luminal microorganisms consist of ciliated protozoa, 

anaerobic bacteria and small numbers of Enterobacteriaceae sp. (108,109). The normal 

colonic pH is maintained at 6.0-6.8 and osmolarity of 300 mOsm/L (106,110,111). The 

end products of fermentation o f soluble (starch) and insoluble (cellulose) carbohydrates 

are the VFAs, acetate, butyrate, and propionate, and carbon dioxide, methane and small 

amounts of lactate (112). Acetate is produced in the largest quantity but the ratio of 

acetaterpropionate decreases as the ratio o f solublerinsoluble carbohydrate increases 

(105). Periods of high VFA production are associated with a rapid increase in fluid
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volume, production of large quantities of osmotically active organic acids and gas 

formation (105,107). Homeostatic mechanisms to buffer organic acids include transport 

of bicarbonate from the small intestine, secretion of bicarbonate from the large intestinal 

mucosa and rapid absorption of VFAs (112).

Approximately 97% of VFAs are dissociated (ionized) at the average pH of the 

equine large intestine (113). The ionized form is poorly absorbed compared with the 

lipid-soluble unionized form (113). In the colonic lumen, carbon dioxide combines 

with water to form carbonic acid, which dissociates into bicarbonate and hydrogen ions

(114). The ionized VFAs combine with the hydrogen ions to form undissociated 

(unionized) VFAs, which are subsequently absorbed into the colonic epithelial cells

(115). Within the epithelial cells, the VFAs can be metabolized or transported into the 

blood and carried to the liver for energy metabolism (115). As the VFAs are absorbed, 

bicarbonate accumulates in the intestinal lumen ( 1 1 1 ).

Undigested protein entering the large intestine is digested by microbial flora to 

ammonia (NH3) (104). The NH3  pools arise from microbial deamination of amino acids 

and from hydrolysis of non-protein nitrogen such as urea (104). The NH3  together with 

a carbon skeleton can be used to synthesize microbial protein (104). The rate of 

microbial protein synthesis depends on readily available carbohydrate sources and 

serves as a major route of NH3  disposal (104). The majority of protein degraded is lost 

in feces or the NH3  is absorbed into the blood and utilized by the horse (converted to 

urea in the liver) (104,106).

The ascending colon undergoes periods of net fluid and electrolyte secretion 

alternating with periods of net absorption. Absorptive processes are confined to the
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% 1 i
surface epithelium of the colon while the crypts are secretory. Large volumes of water 

and sodium are secreted. Net secretion occurs at a time when VFAs are rapidly 

produced and provide additional fluid and bicarbonate buffer to facilitate fermentation 

(104).

Gastrointestinal transport of fluid and electrolytes involve both passive and 

active mechanisms. Passive forces include the intrinsic permeability of the intestinal 

epithelial cells, the osmotic pressure gradient exerted by intestinal luminal contents, the 

electrical potential difference across the intestinal epithelial cells, the concentration 

gradient of solutes across the intestinal epithelial cells, and the pH of the luminal 

contents (116). Luminal pH affects the absorption of weak acids and bases because only 

nonionized acids or bases can passively diffuse across cell membranes (117).

The electrical potential gradient across the cell promotes the movement of an ion 

toward the side of the cell with the opposite electrical charge. In the equine colon, the 

potential gradient is 35 to 40 mV, with the serosal side being positively charged. In 

horses, the potential gradient favors passive chloride absorption but restricts passive 

sodium absorption (115).

Both primary and secondary mechanisms exist for active transport of ions (116). 

Primary active transport involves transport of an ion against its electrochemical gradient 

using energy derived from another cell membrane transport process or from glucose 

metabolism (114). The interior o f the mucosal cell is approximately 30 mV negative 

with respect to the mucosal surface (114). This charge difference promotes sodium 

entry into the cell from the intestinal lumen (114). In the equine colon, sodium is 

proposed to be actively transported into the epithelial cell secondary to Na+, BC+-ATPase
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pump activity (114). The pump actively transports sodium out of the cell across the 

basolateral membrane and brings potassium into the cell (118). Additionally, sodium 

transport into the cell is enhanced in the presence of glucose (113). The energy for this 

transport is derived from the intracellular metabolism of glucose ( 1 1 1 ).

Secondary active transport systems utilize the free energy derived from passive 

diffusion of one ion down its electrochemical gradient to transport another ion against 

its electrochemical gradient (116). In horses, Na+-H+ and Cr-HC03‘ exchange systems 

have been identified (114).

Acute gastrointestinal tract disease (colic) is the leading natural cause of death in 

adult horses (119,120). Gastrointestinal tract ischemia commonly develops secondary 

to low-flow/no-flow conditions, with small intestinal volvulus or incarceration 

(121,122) and large colon volvulus (123-125) being common causes. In one study, 

strangulating obstructive lesions were associated with the highest mortality (75%) of all 

types of colic (126). Large colon abnormalities account for up to 50% of the horses that 

die or are euthanatized subsequent to colic ( 1 2 0 - 1 2 2 ).

In horses, strangulating volvulus of the ascending colon has been reported to 

have a mortality approaching 80% (125). The disease is characterized by colonic 

luminal obstruction and vascular occlusion secondary to the volvulus, thereby resulting 

in colonic ischemia, mucosal necrosis and vascular thrombosis (127). Colonic blood 

flow has been shown to remain significantly below baseline values for at least 4 hours 

after correction of complete arteriovenous occlusion in horses (128). The high mortality 

associated with colonic volvulus may be related to a sustained reduction of blood flow 

and hypoperfusion (due to increased vascular resistance) after surgical correction and
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continued ischemic injury. Endothelial damage occurs in the colonic vasculature 

subsequent to ischemia-reperfusion and can be exacerbated by endotoxin (129). The 

sustained decrease in colonic blood flow may be associated with endothelial damage in 

the colonic circulation, leading to a loss of endothelium-derived vasorelaxants and 

subsequent vasoconstriction. Many of these horses develop systemic hypotension 

owing to hypovolemia and endotoxemia, which contribute to decreased splanchnic 

blood flow. Additionally, equine colonic mucosal ATP content has been shown to 

decrease 92% during ischemia and recovers to only 44% of control value after 

reperfusion, thereby limiting substrate availability for cellular metabolic functions

(130). The decreased blood flow and tissue ATP content that occurs during colonic 

ischemia can lead to disruption of the mucosal barrier and transmural passage of 

endotoxin into the systemic circulation. If sufficient endotoxin enters the systemic 

circulation, death can ensue.

1.4 Biochemistry of ATP

Mammalian cells require a continuous supply of energy to perform three basic 

functions: mechanical work, active transport of molecules and ions, and synthesis of 

biomolecules. Oxidation of foodstuffs provides free energy, which is subsequently 

transformed into a highly accessible and efficient energy form that is utilized by cells to 

perform the above-mentioned tasks. The free-energy donor in most energy-requiring 

processes is ATP. In 1941, Fritz Lipmann and Herman Kalckar first perceived the 

central role that ATP plays in energy exchange in biological systems (131).

ATP is an adenine nucleotide containing an adenine, a ribose, and a triphosphate 

unit (Figure 1.1). The active form of ATP is usually a complex of ATP with a co-factor,
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Figure 1.1 - Chemical structure of ATP, ADP, AMP and adenosine.
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either Mg2* or Mn2+. ATP contains two phosphoanhydride bonds in its triphosphate 

unit, which makes it a rich source of energy. When ATP is hydrolyzed to adenosine 

diphosphate (ADP) (Figure 1.1) and orthophosphate (Pf) or adenosine monophosphate 

(AMP) (Figure 1.1) and pyrophosphate (PPj), large quantities of free energy are released

(131).

The adenine nucleotides are interconvertible. When ATP is hydrolyzed, the free 

energy liberated is used to drive reactions that require an input of free energy. When 

fuel molecules are oxidized, ATP is regenerated from ADP and P*. This ATP-ADP 

cycle is the fundamental mode of energy exchange in biological systems (131).

In biological systems, ATP serves as the principal immediate donor of free 

energy rather than as a long-term storage form of energy. The turnover of ATP is 

immense. Motion, active transport, signal amplification and biosynthesis can occur only 

if ATP is continuously regenerated from ADP. Generation of a proton-motive force, 

which occurs when protons are pumped across a membrane, provides the power 

necessary to synthesize ATP. This is an extremely efficient, energy-conserving event 

that can generate large quantities of ATP (131).

Degradation of glucose to carbon dioxide and water is the principal source of 

ATP. Glycolysis is the initial step in which energy is released from the glucose 

molecule. The end products of glycolysis are then oxidized to provide energy. During 

glycolysis, one molecule of glucose is used to form two molecules of pyruvate (Figure 

1.2). This process requires the input of two ATP molecules and a total of four 

molecules of ATP are formed. Therefore, the net ATP production per molecule of
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Figure 1.2 - Glycolysis
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glucose utilized is two, with an overall efficiency of 43%. The remaining 57% of energy 

is lost in the form of heat (132).

Pyruvate formed from glycolysis is converted to acetyl-CoA, which enters the 

Citric Acid Cycle (Figure 1.3). This sequence of reactions in which the acetyl portion of 

acetyl-CoA is degraded to carbon dioxide and hydrogen atoms occurs in the 

mitochondrial matrix. Only one molecule of ATP is formed during each revolution of 

the cycle so a net of two ATP/glucose molecule is formed in this fashion (132).

As stated previously, generation of a proton motive force provides the energy to 

drive the formation of ATP. Almost 90% of the total ATP formed by glucose 

metabolism is formed during subsequent oxidation of the hydrogen atoms that were 

released during the earlier stages of glucose degradation. During the breakdown of one 

glucose molecule, a total of 24 hydrogen atoms are formed. The hydrogen atoms are 

released in packets of two, and in each instance, the release is catalyzed by a 

dehydrogenase enzyme. Twenty of the 24 hydrogen atoms are immediately ionized. 

Both the free hydrogen ion and the hydrogen bound with nicotinamide adenine 

dinucleotide (NAD+) subsequently enter into the electron transport chain. The 

remaining four hydrogen atoms combine with a specific dehydrogenase and pass 

directly from the dehydrogenase into the oxidative process (132).

Oxidation of hydrogen is accomplished by a series of enzymatically catalyzed 

reactions that split each hydrogen atom into a hydrogen ion and an electron. The 

electrons eventually combine oxygen with water to form hydroxyl ions. The hydrogen 

and hydroxyl ions then combine with each other to form water. During the sequence of 

oxidative reactions, tremendous quantities of energy are released to form ATP.
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Formation of ATP in this manner is called oxidative phosphorylation, which occurs in 

the mitochondria by the chemiosmotic mechanism (Figure 1.4) (132).

The electrons immediately enter an electron transport chain of electron 

acceptors, which include membrane flavoprotein, several iron sulfide proteins, 

ubiquinone, and cytochromes B, C, C„ A, and A3. All are an integral part of the inner 

mitochondrial membrane. When the electrons reach cytochrome A3  (cytochrome 

oxidase), elemental oxygen is reduced to form ionic oxygen, which then combines with 

hydrogen ions to form water. During transport of these electrons through the electron 

transport chain, large amounts of energy are released to drive the synthesis of ATP. The 

energy generated during the chemiosmotic mechanism is used to pump hydrogen ions 

from the inner mitochondrial membrane into the outer chamber between the inner and 

outer mitochondrial membranes. This creates a high concentration of positively charged 

hydrogen ions in the outer chamber and a strong negative electrical potential in the inner 

mitochondrial matrix (132).

The next step is the conversion of ADP to ATP. This process involves ATP 

synthetase, a large protein molecule that protrudes through the inner mitochondrial 

membrane and into the inner matrix. The high concentration of positively charged 

hydrogen ions in the outer chamber and the large electrical potential difference across 

the inner membrane cause the hydrogen ions to flow into the mitochondrial matrix 

through the ATPase molecule. This proton-motive force provides the energy necessary 

to convert ADP into ATP (132).

The final step in the process is the transfer of the ATP from the mitochondrion 

to the cytoplasm. This occurs by facilitated diffusion through the inner mitochondrial
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Figure 1.4 - Electron transport chain. IMM = inner mitochondrial matrix; FMN 
flavoprotein; FeS = iron sulfide proteins; CoQ = ubiquinone; Cyt = cytochrome.
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membrane and simple diffusion through the outer mitochondrial membrane. In turn, 

ADP is transferred in the opposite direction to allow for continual conversion into ATP. 

For each pair of electrons that pass through the electron transport chain, three ATP 

molecules are synthesized (132).

In all, 38 molecules of ATP are formed for each molecule of glucose that is 

degraded to carbon dioxide and water. Thus, 456,000 calories of energy can be stored 

in the form of ATP, whereas 686,000 calories are released during the complete 

oxidation of one molecule of glucose. The overall efficiency of energy transfer is 6 6 %, 

with the remaining 34% of energy being lost in the form of heat (132).

1.5 Purines and Purinergic Receptors

Extracellular purines (ATP, ADP, AMP and adenosine) (Figure 1.1) are 

important signaling molecules that are involved in numerous biological processes, 

including smooth muscle contraction and relaxation, neurotransmission, exocrine and 

endocrine secretion, the immune response, inflammation, platelet aggregration, pain, 

and modulation of cardiac function (133). In 1929, Drury and Szent-Gydrgyi suggested 

that purines may serve as extracellular signaling molecules based on their studies which 

demonstrated that adenosine and AMP extracted from heart muscle could induce heart 

block, arterial dilatation, hypotension, and inhibition of intestinal smooth muscle 

contraction (134). Gillespie, in 1934, demonstrated that the potency and response to 

extracellular purines was influenced by the presence or absence of the phosphate units 

o f adenine nucleotides (135). Phosphate removal increased the ability of adenine 

compounds to cause vasodilatation and hypotension, whereas ATP, which contains 3 

phosphate units, increased blood pressure in the cat and rabbit that was rarely or never
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observed with AMP or adenosine. Furthermore, ATP was shown to be more potent than 

AMP and adenosine in causing contraction o f the guinea pig ileum and uterus smooth 

muscle (135). These results supported the concept that different purine receptors exist 

and that different adenine nucleotides have different mechanisms of action.

“Purinergic” receptors were first formally recognized by Bumstock in 1978 and 

were divided into two main categories: “P,-purinoceptors’\  which adenosine is the 

principal natural ligand, and “P2 -purinoceptors”, which recognize ATP and ADP (136). 

The division was based on several criteria including relative potencies of the adenine 

nucleotides; selective antagonism of the effects of adenosine by methylxanthines; 

activation of adenylate cyclase by adenosine; and stimulation of prostaglandin synthesis 

by ATP and ADP.

Adenosine/Pl and P2Y receptors couple to G proteins. G-protein receptors, 

which constitute the largest category of receptors, have a conserved structure consisting 

of seven transmembrane (TM) domains of hydrophobic amino acids. The N-terminal is 

on the extracellular side and the C-terminal is on the cytoplasmic side of the cell 

membrane. The TM domains form a pocket where the ligand binding site is located. 

Purinergic agonists are believed to bind within the upper half o f this pocket. Three 

extracellular and three cytoplasmic hydrophilic loops connect the TM domains. 

Following ligand binding to the receptor, the intracellular segment of the receptor 

interacts with the appropriate G protein to activate specific intracellular signal 

transduction pathways (Figure 1.5) (133).

The TM regions are generally highly conserved and are crucial for ligand 

binding and specificity (133). Specifically, the carboxyl region of the second EC loop is
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Figure 1.5 - G-Protein receptors and their signal transduction mechanism. ŷ CC = G 
protein heterotrimer, GDP = guanosine diphosphate; GTP - guanosine triphosphate; E 
effector; S = substrate; P = product; Pi = orthophosphate.
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primarily involved in ligand recognition (137,138) and the histidine residues in TM6 

and TM7 in ligand binding (138).

To date, four subtypes of adenosine/Pl receptors have been identified: A„ A ^, 

Ajb, and A3  (139). The predominant adenosine/Pl receptor type on blood vessels are 

the Aja and A2B receptors, which are located on the smooth muscle and endothelium. 

Ligand binding with subsequent receptor activation in the vasculature produces 

vasodilatation (133). The AM receptors have a wide-ranging but restricted distribution 

that includes immune tissue, platelets, the central nervous system (CNS) and vascular 

smooth muscle and endothelium (133). The most commonly recognized signal 

transduction mechanism for the A,* receptors is activation of adenylate cyclase via 

coupling with the G protein, Gs. The receptor/protein coupling is tight; therefore, 

agonist dissociation is slow (140). Some A ^ receptors may activate KATP channels, 

which may involve a cAMP-dependent protein kinase (PK) (141). Short-term 

desensitization of the A ^ receptor involves receptor phosphorylation with subsequent 

dissociation of the receptor from the G protein. Long-term desensitization involves 

inhibition of adenylate cyclase activity, down-regulation of receptor number, or up- 

regulation of inhibitory G proteins (Gj) (142-144).

The other major adenosine/Pl receptor subtype associated with blood vessels is 

the Ajg. This receptor couples to different signaling pathways including activation of 

adenylate cyclase, Gq/Gn-mediated coupling to PLC and inositol 1,4,5-triphosphate 

(IP3)-dependent increase in Ca2+, and coupling to PLC (145,146). Owing to the lack of 

selective antagonists for this receptor subtype, little is known about receptor 

desensitization; however, it may involve inhibition of adenylate cyclase and receptor
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phosphorylation and uncoupling from G proteins (142,147). This receptor subtype is 

important for mediating vasodilatation in some vessels, whereas the predominates in 

other vessels (148,149).

Categorization of the P2 receptors has been difficult. Recent discoveries have 

included: (1) multiple P2X receptors are often co-expressed in different proportions in 

different tissues; (2) P2X receptors can exist as heteromers or homomers; (3) cations 

can affect P2X channel activity; (4) 2-methylthio ATP, which was previously regarded 

as a selective P2Y agonist, additionally has profound effects on P2X receptors also; (5) 

ecto-nucleotidases can affect agonist potencies; (6 ) antagonists that were previously 

thought as P2 receptor blockers are non-selective. The lack of selective agonists and 

antagonists, the coexistence of different P2 receptors, and the degradation and 

interconversion of purines has prompted re-evaluation of previous conclusions about P2 

receptors and has markedly hindered advances in P2 receptor characterization (133).

P2X receptors are ATP-gated ion channels which mediate rapid and selective 

permeability to cations (N a\ K+ and Ca2+) (150-152). To date, seven mammalian P2X 

receptors (P2X,_7) have been cloned and characterized (133). The most significant P2X 

subtype on vascular smooth muscle is the P2X, homomer (153).

Ligand binding to the P2X receptor results in the rapid, non-selective passage of 

cations (Na+, K+ and Ca+) across the cell membrane resulting in an increase in 

intracellular Ca2+ and depolarization (150,151). Membrane depolarization subsequently 

activates voltage-dependent Ca2+ channels, which further contributes to the increase in 

intracellular Ca2*. Since this pathway does not involve a second-messenger system, the 

response time is rapid. The concentrations of extracellular cations can markedly
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influence the receptor’s response since it is a ligand-gated ion channel (133). 

Desensitization of P2X, receptor is rapid and will terminate the purinergic response 

(133). The mechanism of desensitization is not well understood but may involve the 

hydrophobic domains of the P2X, receptor (154).

P2X receptors are involved in the generation of excitatory junction potentials 

(EJP), depolarization, and constriction (155,156). Sympathetic stimulation of blood 

vessels leads to the development of a rapid EJP that can be blocked by P2 receptor 

antagonists and desensitization of the P2X,-like receptor. Prolonged periods of 

stimulation cause summation of the EJPs and the membrane depolarization, which 

allows opening of voltage-dependent Ca2+ channels, Ca2+ entry, and contraction 

(155,157).

P2Y purine receptors couple to G proteins. Currently, they include five 

mammalian cloned receptors (P2Y„ P2Y2, P2Y4, P2Y6, and P2Y,,) and the uncloned 

P2YADP. P2Y receptors are 308-377 amino acid proteins with a mass of 41 to 53 kDa 

after glycosylation. The seven TM domains are common to that of other G protein- 

coupled receptors (133).

Coupling of most P2Y receptors to the G^,, protein activates PLC, which 

stimulates membrane phosphoinositide metabolism and increased production of IP3  and 

diacylglycerol (DAG) and mobilization of intracellular Ca2+. Coupling to adenylate 

cyclase, which involves Gs proteins, by some P2Y receptors has also been described. 

Since activation of this receptor leads to generation of second messengers, the response 

time is longer (133).
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The P2Y, and P2Y2  receptors are the most prevalent P2Y receptors located on 

blood vessels. Other P2Y receptors that have been identified on blood vessels but play 

only minor roles in the control of vascular tone include the P2Y4  and P2Y6  (133). The 

P2 Y, receptor is activated by ADP, ATP and certain diadenosine polyphosphates. The 

receptor exhibits heterogeneity  which is most likely attributable to small differences in 

the structure of the receptor. There is only a sequence homology of 84% between the 

turkey and human P2Y, receptor (158). The heterogeneity in ligand binding includes 

both agonists and antagonists (133). The receptor appears to be more sensitive to 

adenine nucleotide diphosphates than to triphosphates, and the sensivity to ATP is 

variable (159-161). Additionally, the electrical charge of the molecule can influence the 

potency of agonists (162,163).

The principal signal transduction pathway involves activation of PLC.

Formation of IP3  and mobilization of Ca2+ stimulates a variety of signaling pathways, 

including PKC, PLA2, Ca2+-dependent K+ channels, nitric oxide synthase (NOS) with 

subsequent formation of NO, and generation of endothelium-derived hyperpolarizing 

factor (EDHF). The main physiological target of DAG is stimulation of PKC, which in 

turn may stimulate phosphatidyl choline-specific PLC, PLD, the mitogen-activated 

protein kinase (MAPK) pathway, and Ca2+ influx via voltage-gated Ca2+ channels. 

Generation of PKC and subsequent phosphorylation of MAPK appears to be the 

pathway by which these receptors on endothelial cells mediate prostacyclin production 

(164,165). A second signaling pathway may be inhibition of adenylate cyclase (166). 

These two pathways are expressed independently (166).

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

In general, P2Y, receptors do not readily desensitize. However, when 

desensitization does occur, it may involve phosphorylation of the receptor by protein 

kinases and uncoupling of the G protein (133).

P2Y, receptors are widely distributed and have been described in heart, vascular, 

connective, immune and neural tissues (133). Their distribution on vascular endothelial 

and smooth muscle cells implies a role in the regulation of vascular tone. In most blood 

vessels, P2Y,-like receptors are located primarily on the endothelium and mediate 

vasodilatation by Ca2+-dependent activation of endothelial NOS with subsequent 

generation of NO and by generation of EDRF. Endothelial prostacyclin synthesis and 

release is also stimulated, but appears to play a minor role in the relaxation response 

(167).

P2Y( receptors are also present on the smooth muscle of a number of blood 

vessels and mediate vasodilatation (168-170). The pathway involved in the relaxation 

response is not known but may involve activation of K+ channels (171). The 

significance of these receptors on vascular smooth muscle may be in mediation of non- 

adrenergic non-cholinergic (NANC) relaxation. ATP released as a neurotransmitter 

from sensory-motor nerves may activate P2Y, receptors on the vascular smooth muscle 

leading to relaxation (170,172,173).

The P2 Y2  receptor is activated by ATP and is insensitive or only weakly 

sensitive to ADP (133). Similar to P2Y„ the P2Y2  leads to phosphoinositide 

metabolism and Ca2+ mobilization but via PLCP (151). IP3  formation and Ca2+ 

mobilization stimulate the same signaling pathways as the P2Y, receptors (133).
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Another reported signal transduction pathway involves PLD and stimulation of 

phosphatidylcholine breakdown (174,175). The mechanism of activation of PLD is 

unclear but may involve the combined actions of PKC, Ca2+, and G proteins (175). The 

major route for prostacyclin production in endothelial cells involves protein tyrosine 

phosphorylation and MAPK activation, which occurs subsequent to activation of PKC 

but does not involve IPjOr cytosolic Ca2+ (164,165).

P2Y2  receptors are widely distributed and ATP is the natural ligand (133). In the 

vasculature, they are generally present on the endothelium. Synthesis and release of 

prostacyclin (PGIj) and NO results in vascular relaxation (160,176-178). Similar to 

P2Y, receptors, P2Y2  receptors do not readily desensitize. Tachyphylaxis has been 

shown to occur and may involve phosphorylation of the intracellular regions of the 

receptor (179).

In general, many cells express more than one P2 receptor type. Receptor co­

expression permits potential regulation of multiple effectors, fine tuning of agonist- 

evoked responses, and/or synergy. For example, P2X, and P2Y, receptors co-exist on 

the smooth muscle in some vessels where they may reciprocally control vascular tone by 

acting as mediators of vasoconstriction and vasodilatation, respectively. Patterns of co­

expression may be altered under different physiological and pathophysiological 

conditions (133).

The local control o f vascular tone is regulated by the integrated effects of 

Adenosine/Pl and P2 receptors (155). For example, P2Y„ P2Y2, AM and A2B receptors 

are located on endothelial cells while Al and P2X| receptors are on smooth muscle cells. 

Normal patterns of purinergic signaling may alter dramatically under pathophysiological
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conditions. The net effect of purine receptors may be vasodilatation if endothelial cells 

are intact, but vasoconstriction may predominate if the endothelium is damaged, hi 

addition, the metabolic relationship between purines, where ATP is catabolized to ADP 

and adenosine, has important implications for co-localized adenosine/Pl and P2 

receptors as there may be an interplay between these receptors (133).

1.6 ATP and ATP-MgCl*

Depletion of ATP in shocked animals was first noted in 1945 by McShan and 

co-workers (180). During shock, low-flow conditions and organ ischemia, anaerobic 

glycolysis is activated, which is an inefficient system for the synthesis of ATP (179). 

During anaerobic glycolysis, ATP utilization exceeds production, resulting in decreased 

intracellular ATP concentrations (181). If oxygen is not available, pyruvate is unable to 

follow its normal pathway via acetyl coenzyme A into the Citric Acid Cycle, which 

results in accumulation of lactic acid within the cell (182). This block in the glycolytic 

pathway leads to a tendency for glucose to exit the cell, which further reduces substrate 

availability for ATP production (183).

Under basal metabolic conditions, low levels of ATP are released from cells into 

the extracellular space. However, when hypoxic conditions exist, the quantity of ATP 

released is appreciably increased. Upon reoxygenation, ATP release returns to basal 

levels (184). When myocardium is rendered hypoxic, the large quantities of ATP 

released can cause profound vasodilatory effects, with subsequent alterations in 

hemodynamic status (185). Additionally, skeletal and cardiac muscle and brain tissue 

have been shown to release substantial quantities of ATP into the extracellular space, 

and these concentrations can profoundly affect vasomotor tone and local blood flow
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(183-187). During shock, progressive failure of vital organs occurs, with cardiac failure 

frequently being the terminal event Cell membranes begin to depolarize, which leads 

to intracellular accumulation of sodium and water and decreased intracellular potassium 

(187-191). These electrolyte/water alterations are suggestive of disruption o f the cell 

membrane and inactivation of the N a\ K+-ATPase pump. Depletion of intracellular 

energy stores, namely ATP, with subsequent inhibition of ATP-dependent cellular 

responses may occur as a result of alterations in cell membrane transport that occurs 

during shock (192,193).

Both oxygen and substrate deprivation prevent cells from regenerating ATP, 

which is required to maintain ionic gradients and structural integrity. Since shock and 

ischemia can deplete intracellular stores of ATP, the use of exogenously administered 

ATP to maintain energy stores for cellular metabolism and survival has been 

investigated. Extracellular ATP can influence many biological processes. When ATP 

is applied externally to a cell, profound changes in permeability are observed in 

monolayer cell cultures (194). Upon depletion of intracellular stores of ATP, a marked 

increase in the sensitivity of cells to external ATP occurs (195). When low 

concentrations of ATP are added to culture medium, a profound change in cellular 

permeability of monolayer cell cultures is observed (194). In cell culture, exogenous 

ATP decreases leakage of intracellular enzymes from human white blood cells and rat 

lymphocytes (196). This protective effect of ATP appears to be concentration- 

dependent. At physiological concentrations, the action of ATP is slight and relatively 

short-lived. However, when higher concentrations are used, the membrane-stabilizing 

effects are more pronounced and the response persists for a longer period (196).
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During shock, administration of ATP has been shown to be protective (197- 

201). The protective effects o f ATP may be due to: myocardial support; replacement of 

deficient high-energy phosphate stores; and metabolic support by bypassing 

mitochondrial deficits in electron transport-phosphorylation system (197-200).

During hemorrhage, cellular ATP content is markedly reduced. Administration 

of ATP during hemorrhagic shock has been shown to improve survival and increase 

ATP content of heart and liver compared with untreated rats subjected to hemorrhage. 

When ATP was administered prior to hemorrhage, survival rate was 80% compared 

with 30% in control animals. If ATP was administered after hemorrhage, survival 

decreased to 60%. The beneficial effects of ATP on survival following hemorrhage was 

not due solely to its vasodilatatory action, since other hypotensive drugs failed to be 

protective. Since administration of pyrophosphate and AMP was not protective, the 

beneficial effects of ATP may be due to the terminal high energy phosphate bond (197).

Glucose homeostasis and insulin dynamics play a critical role in the 

pathogenesis of endotoxin shock (202). During experimentally-induced endotoxic 

shock, both dogs and rats develop hypoglycemia and hyperinsulinemia (203,204). 

Phosphorylation of cell membranes occurs with administration of ATP, which markedly 

depresses insulin-stimulated glucose transport and metabolism (205). Administration of 

ATP during experimentally-induced endotoxic shock in rats depressed the 

hypercatabolism of glucose that occurs (2 0 1 ).

Both vascular endothelial and cardiac smooth muscle cells contain high levels of 

ecto-ATPases on their membrane surface. The loss o f intracellular ATP during 

ischemia may be partially mediated through these enzymes. One proposed mechanism
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to explain the beneficial effects of exogenous ATP may be that ATP binds receptors 

involved in activation of ectoenzymes and blocks them, thereby sparing intracellular 

adenine nucleotides from degradation (206).

Another proposed mechanism may involve direct entrance of ATP, or other 

adenine nucleotides, into the cell to restore depleted energy stores. In isolated canine 

hearts, the inability of myocardial cells to regenerate ATP may be due to loss of 

nucleotide precursors through metabolism of these substances to inosine, with 

subsequent loss of inosine to the extracellular space (207). Addition of exogenous ATP, 

but not ADP or AMP, was found to increase the ATP and total adenine nucleotide 

content of hypoxic myocardium (208).

Substantial evidence that exogenous ATP can influence many biological 

functions has existed for a long time, but whether ATP exerts its effects by gaining 

access to the intracellular compartment is not known. In studies utilizing isolated 

skeletal muscle preparations, exogenous ATP induced muscle contraction (209). 

However, whether the response was due to a surface effect or an intracellular effect was 

not known. In 1970, l4 C-ATP was shown to enter intact skeletal muscle cells in vitro 

and the labeled intracellular ATP was due to transport of ATP itself and not due to 

formation of ATP from its breakdown products (210). Further studies have 

demonstrated that both ATP and ADP can enter the cell but that AMP remains in the 

extracellular compartment (211). Evidence to support this claim was obtained by use of 

ADP, which decreased the ATPrADP ratio. This was further substantiated with an ATP 

regenerating system, which increased the ATPrADP ratio (210). However, whether 

ATP is intracellular or is binding to specific membrane sites and concentrating on the

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

surface remains unknown. Surface binding is unlikely due to extensive degradation of 

ATP in the tissues; the volume of distribution of ADP is less than ATP; and external 

AMP remains extracellular (210,212). Substantial evidence supports the claim that 

ATP can enter the cell membrane of tissues (213,214) and that the process is enhanced 

during adverse circulatory conditions (215,216). Studies also provide evidence for 

intracellular uptake of ATP (217).

The mechanism of how ATP enters the cell is not understood but may involve a 

carrier-mediated transport system (212,218). Small quantities of exogenous ATP (I 

mM), but not ADP or AMP, increases ATP and total adenine nucleotide content in 

hypoxic myocardium (208). Furthermore, addition of ATP, but not ADP or adenosine, 

to culture medium increased ATP content of cultured myocardial cells (219). There is 

some evidence to support the concept that ATP translocation is associated with a Na+, 

K+-ATPase (220).

Inside o f the cell, both ATP and ADP complex with magnesium (221). Most 

ATP reactions require ATP as a substrate and magnesium as a cofactor (221).

Therefore, the reported beneficial effects of exogenous ATP may be enhanced with 

addition of magnesium. A complex of ATP-MgCl2  has been shown to be capable of 

entering intact cells (210). A study in rabbits showed that injected ATP-MgCl2  is 

retained in the circulation and is present in sufficient qunatities to provide beneficial 

effects to cells (222). When ATP was combined with magnesium-chloride (MgClj), the 

effect of ATP on cellular function and microcirculatory blood flow during shock and 

ischemia was enhanced (206). Beneficial effects were not observed if ATP or MgCl2  

alone or adenosine-MgCl2  were infused (206). ATP is a biological complexing agent
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and if given alone, may chelate divalent cations in the vascular system and cause 

different hemodynamic effects than those that are observed when ATP is complexed 

with MgCl2  (221).

The mechanism of how MgCl2  enhances the effect of ATP is unknown; however, 

it has been shown both in vivo and in vitro that magnesium may inhibit deamination and 

dephosphorylation of ATP by tissues (221) and prevent the ATP from coupling with 

other ions (223). Thus, if ATP is administered in conjunction with MgCl,, a higher 

concentration of ATP could be available for the tissues to utilize (221). In addition, 

MgCl2  may help replenish cellular magnesium levels that are decreased during shock 

states (206,224) and enhance several important reactions that involve ATP (225).

Tissue and mitochondrial magnesium levels have been shown to significantly decrease 

following ischemia and reperfusion and ATP-MgCl2, but not ATP or MgCl2  alone, 

substantially improves tissue and mitochondrial magnesium levels (2 2 1 ).

The hemodynamic alterations associated with administration of ATP-MgCl2  

have been studied in both normal and pathophysiological situations. In man, ATP- 

MgCl2  (0.1-0.4 mg/kg/min) increased CO by 76%, principally by increasing heart rate 

(43%). However, stroke volume index was also increased (14%). The increase in CO 

was correlated with rate of infusion (0.1-0.4 mg/kg/min), not the total dose. Changes in 

MAP were not observed in the study. At the highest infusion rate (0.4 mg/kg/min), SRL 

decreased (226).

During ischemia, oxygen and substrate deprivation leads to a decrease in cellular 

ATP production. Since ATP is necessary to maintain ionic gradients and structural 

integrity, cellular damage ensues (227). Utilizing intravital fluorescence microscopy,

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Clemens and colleagues demonstrated that administration of ATP-MgCl2  following 

hepatic ischemia improved microcirculatory blood flow to the surface of the liver. 

Specifically, the improvement in blood flow was due to a decrease in the loss of 

perfused capillaries during reperfusion (227). Additionally, leakage of intracellular 

enzymes (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) were 

reduced (228). In a canine hypothermic heart ischemia/reperfusion model, 

administration of 1 mg/kg/min ATP and 0.33 mg/kg/min MgCl2  during reperfusion 

resulted in complete functional recovery, whereas control animals showed marked 

reduction in hemodynamic performance and myocardial compliance (229). Fedelesova 

and colleagues demonstrated in isolated, nonperfused hypothermic canine hearts that a 

portion of exogenous ATP was broken down to ADP and AMP and that some of the 

ADP entered the cell and became phosphorylated to regenerate ATP (230).

In an isolated perfused rat kidney model, ischemia caused a rapid decline in ATP 

levels, as assessed with high-resolution 3 1 P-nuclear magnetic resonance spectroscopy 

(231). Upon reperfusion, a 56% increase in tissue ATP content was observed within 10 

min. Thereafter, a slow decline in ATP content occurred, and by 75 min, the ATP 

content had decreased to approximately 33% of normal values. When the kidney was 

perfused with 0.3 mM ATP-MgCl2, renal ATP levels increased to 69% of normal values 

within 10 min, and by 75 min they were normal. Additionally, the intracellular acidosis 

and decreased blood flow induced by ischemia/reperfusion was reversed. Cessation of 

blood flow to the kidney leads to a depletion of high-energy phosphate stores and a 

steady rise in Pi levels. The improvement in renal ATP content may be due to direct 

entry of ATP into tubular epithelial cells to provide metabolic energy (216) or to a
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priming effect on the resynthesis of adenine nucleotides (232) and repletion of the 

precursor pool (231).

Mesenteric ischemia with subsequent reperfusion results in mucosal barrier 

dysfunction, manifested by transcellular movement of fluid from the microcirculation 

and, in the reverse direction, translocation of endotoxin from the bowel lumen to the 

lymphatic vessels (233) and portal blood (234). Depletion of cellular energy stores 

(ATP) contributes to the cellular dysfunction (235-238). The effects of ATP-MgCl2  on 

intestinal permeability, ATP content, and blood flow during ischemia has been 

evaluated. In a rat model of intestinal ischemia, plasma to lumen clearance of 5 1 Cr- 

EDTA was used as a marker of altered permeability. Ischemia induced by mesenteric 

arterial occlusion for 90 min increased permeability, and this was associated with a 

significant reduction in blood flow as assessed by radiolabeled microspheres. Rats 

pretreated with ATP-MgCl2  demonstrated no increase in 5 ,Cr-EDTA clearance over 90 

min. However, the decrease in blood flow induced by ischemia was not reversed.

Tissue ATP levels were reduced within 5 min of ischemia and remained decreased 

throughout 90 min. Administration of ATP-MgCl2  did not significantly alter tissue ATP 

levels (239). ATP-MgCl2  improved survival in neonatal rats exposed to intestinal 

ischemia (240) and improved intestinal mucosal function as assessed by absorptive 

capacity (241).

In vitro studies using intestinal epithelial cells have demonstrated that hypoxia 

decreases ATP content in conjunction with increases in paracellular permeability (242). 

Depletion of ATP produces disruption of cortical actin and actin stress fibers in 

epithelial cells, which results in a decrease in epithelial monolayer integrity (243). In
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the study by Kreienberg and colleagues, the effects of ATP-MgCl2  appear to be through 

a mechanism other than providing cells with an energy source (239). ATP-MgCl2  may 

exert a priming effect or it may enter the cell to provide sufficient high-energy 

phosphates to prevent dephosphorylation of key structural proteins. Improvement in 

mucosal barrier function may be mediated through activation of P2 receptors and 

increased cAMP, which subsequently increases junctional integrity of epithelial cells 

(244). Alternatively, the ATP may degrade to adenosine, bind PI receptors and increase 

cAMP to produce a similar effect (245-247).

In a canine hemorrhage shock model, Horton and colleagues demonstrated that 

dogs administered lactated Ringer’s solution and ATP-MgCl2  (100 |imole/kg each) 

following hemorrhage had lower mean arterial pressure, cardiac output, stroke volume 

and rate of left ventricular pressure rise compared with dogs given lactated Ringer’s 

solution alone (248). The reduced cardiac performance after ATP-MgCl2  administration 

occurred despite adequate coronary blood flow and adequate myocardial oxygen 

delivery. A decreased myocardial oxygen extraction and a negative myocardial lactate 

balance after intravenous ATP-MgCl2  indicate a cellular metabolic defect (248). These 

results contradict observations of another report that indicated ATP-MgCl2-glucose 

improved cardiac filling, stroke volume and Cl despite a fall in heart rate (HR) and SRL 

(249). Additionally, administration of ATP, regardless of concomittant blood 

replacement, failed to appreciably alter CO in hemorrhaged dogs (197).

Hypoxia and shock have been found to be potent stimulants o f inflammatory 

cytokine production (250). In a study of hemorrhage and resuscitation in rats, 

administration of ATP-MgCl2  markedly decreased TNF and IL- 6  levels to those
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comparable with sham controls. ATP-MgCl2  also restored hepatic blood flow and 

hepatic function (as assessed using the extraction ratio for indocyanine green), which 

was decreased with hemorrhage (251). Thus, downregulation of the synthesis and/or 

release of inflammatory cytokines, TNF and IL-6 , may be one of the mechanisms 

responsible for the beneficial effects observed with ATP-MgCl2  following trauma- 

hemorrhage and crystalloid resuscitation (251). The agent may appreciably improve 

microcirculation and thus prevent continued hypoxic insult following ischemia and 

hemorrhagic shock (252-254). Another potential effect of ATP-MgCl2  on cytokine 

production results from suppression of the respective gene transcription and/or 

translation (251). Conversely, the downregulation might be caused by an increase in 

circulating cytokine receptor or inhibitor levels (255). ATP-MgCL could directly or 

indirectly decrease TNF and IL- 6  synthesis by Kupffer cells and consequently prevent 

the deleterious effects of TNF or IL- 6  on hepatocytes (251).

The efficacy of ATP-MgCl2  during sepsis has been evaluated. Using a cecal 

ligation and puncture model of sepsis in rats, administration of saline, glucose (lg), low- 

dose ATP-MgCl2  (12.5 pmole each), or low-dose ATP-MgCl2  plus glucose did not alter 

survival rates. However, when high-dose ATP-MgCl2  (100 pmole ATP and 50 pinole 

MgCl,) plus glucose was used, a significant increase in survival was observed (256).

Upon induction of sepsis, both hepatic and renal ATP levels were decreased 

(256). High dose ATP-MgCl2  alone or in conjunction with glucose restored cellular 

ATP within 3 hours, as determined by spectrophotometric methods. During sepsis, 

animals develop hypoglycemia. If glucose is administered alone, the cells are unable to 

utilize it so hyperglycemia develops. If ATP-MgCl2and glucose are administered, cells
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ace capable of utilizing glucose (257). Additionally, reticuloendothelial system 

dysfunction occurred during sepsis, which was restored with administration of high- 

dose ATP-MgCl2  plus glucose (256).

During Group B streptococcal sepsis in piglets, increases in MAP and PAP, SRL 

and PRl  and PRl:SRl  ratios were observed. Additionally, CO and stroke volume 

decreased. Administration of a continuous infusion of ATP-MgCl2  (0.6 (Xmole/kg/min) 

reversed the hemodynamic alterations that were induced by sepsis. Also, the median 

survival was longer for the piglets treated with ATP-MgCl2. Finally, lung compliance 

was higher and pulmonary airway resistance was lower in treated piglets (258).

1.7 Summary of Literature and Hypotheses for Present Studies

During shock, there are alterations in organ blood flow, which affect cell 

membrane transport and function, energy metabolism, and mitochondrial function. ATP 

utilization exceeds it production, which results in depletion of intracellular ATP stores. 

Therefore, a major rate-limiting factor in shock and ischemia, and thus resuscitation, is 

resynthesis of ATP.

Administration of exogenous ATP, primarily complexed with MgCl2  (ATP- 

MgClj) has been demonstrated to decrease morbidity and improve survival in various 

shock models. The use of ATP-MgCl2  after hemorrhagic shock or other adverse 

circulatory conditions improves mitochondrial function and tissue ATP content; restores 

organ function, blood flow, and microcirculation; improves survival time and survival 

rate; and down-regulates the synthesis and release of inflammatory cytokines.

Adenine nucleotides can alter vasomotor tone through interaction with 

purinergic receptors located on the vascular endothelium and smooth muscle cells.
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Activation of the P2X receptor (predominantly smooth muscle) by ATP opens ATP- 

gated ion channels, resulting in changes in intracellular Ca2+ concentrations with 

subsequent membrane depolarization and contraction of the smooth muscle. Activation 

of the P2Y receptor (predominantly on the endothelium) by ATP or the A2  receptors 

(smooth muscle) by adenosine results in receptor coupling to G proteins and activation 

o f second messenger systems leading to vasodilatation. Since the predominant 

vasomotor effect of adenine nucleotides is vasodilatation, administration of exogenous 

ATP may enhance organ blood flow and microcirculation during shock and ischemia.

In adult horses, acute gastrointestinal tract disease is the leading natural cause of 

death. Strangulating volvulus of the ascending colon occurs frequently and is associated 

with a high mortality rate. The volvulus creates colonic luminal obstruction and 

vascular occlusion, with subsequent colonic ischemia, mucosal necrosis and vascular 

thrombosis. Despite surgical correction, many horses die; this may be due to a sustained 

decrease in blood flow and lack of substrate availability for cellular metabolic functions. 

Additionally, disruption of the mucosal barrier leads to translocation of bacteria and 

endotoxin into the splanchnic and systemic circulation. If sufficient endotoxin enters 

the systemic circulation, death can ensue.

Administration of ATP-MgCl2, which has vasodilatory actions, increases CO 

and delivers energy substrate (ATP) and co-factor (Mg) directly to tissues, may offer a 

potential therapy for horses with intestinal ischemia, endotoxemia and shock. However, 

no information is presently available on the effects of ATP-MgCl2  in horses. The 

hypotheses o f the studies presented in this dissertation include:
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Stwfy 1 - IV infusion of ATP-MgCl2  will cause rate-dependent alterations in 

hemodynamic variables with minimal changes in metabolic, hematologic and serum 

biochemical variables and no detrimental effects in clinically healthy, conscious, adult 

horses.

Study 2 - IV infusion of ATP-MgCl2  will cause a rate-dependent decrease in 

systemic and colonic vascular resistance, principally via vasodilatation, in clinically 

healthy, anesthetized, adult horses.

Study 3 - IV infusion of ATP-MgCU will significantly attenuate the 

pathophysiologic alterations in clinical signs; cardiopulmonary, metabolic, hematologic, 

and serum biochemical variables; and serum cytokines subsequent to low-dose 

endotoxin infusion in conscious, adult horses.

Study 4 - The vasomotor tone of isolated equine colonic arterial and venous 

rings in response to administration of exogenous ATP will be significantly attenuated 

with endothelium removal and incubation with a non-specific NOS inhibitor, N“-nitro- 

L-arginine methyl ester (L-NAME).

Study 5 - An established method for adenine nucleotide quantitation, using high 

performance liquid chromatography, can be modified and validated for use on equine 

colonic mucosal tissue.

Study 6  - Using an electron transport inhibitor (antimycin A) and physiologic 

solution devoid of substrate, equine colonic mucosal adenine nucleotide content can 

be depleted in vitro and then repleted upon removal of the antimycin A and addition of 

substrate.
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CHAPTER 2. HEMODYNAMIC AND METABOLIC 
ALTERATIONS ASSOCIATED WITH INTRAVENOUS INFUSION 
OF A COMBINATION OF ADENOSINE TRIPHOSPHATE AND 
MAGNESIUM CHLORIDE IN CONSCIOUS HORSES*

* Reprinted by permission of the American Journal o f Veterinary Research
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2.1 Introduction

Shock can be defined as “inadequate blood flow to vital organs or the inability 

of the body cell mass to metabolize nutrients normally” (1). The predominant changes 

during shock develop in the microcirculation, affecting cell membrane transport and 

function, energy metabolism, and mitochondrial function (2). During hypoxic 

conditions, endogenous production of ATP is decreased (3). A major rate-limiting 

factor in shock and ischemia, and thus resuscitation, is resynthesis of ATP (4). 

Therefore, a logical therapeutic approach to increase tissue ATP concentrations is to 

infuse the substrate (ATP) directly, rather than administer agents that would lead to 

ATP synthesis (5).

Administration of a combination of ATP and MgCl2  in humans results in 

peripheral vasodilatation and increase in cardiac output (6 ). These findings suggest its 

potential beneficial use in patients with hypoperfusion (low-flow) or organ ischemia. 

Use of an ATP-MgCl2  combination after hemorrhagic shock and other adverse 

circulatory conditions in humans and laboratory animals improves mitochondrial 

function and tissue ATP content (2,7); restores organ function, blood flow, and 

microcirculation (7-12); improves reticuloendothelial function, survival time, and 

survival rate (13,14); and down-regulates synthesis and release of inflammatory 

cytokines (IS).

Low-flow conditions and organ ischemia develop commonly in horses 

subsequent to intestinal strangulation, enterocolitis and proximal enteritis, laminitis, 

endotoxemia, sepsis, and severe dehydration and exhaustion (16). Anaerobic glycolysis 

is activated during ischemia but is an inefficient system for production of ATP (17).
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During anaerobic glycolysis, ATP utilization exceeds production, resulting in decreased 

ATP concentrations (17). If oxygen is not available, pyruvate is unable to follow its 

normal pathway via acetyl coenzyme A into the Krebs-citric acid cycle, which results in 

accumulation of lactic acid within the cell (18). This block in the glycolytic pathway 

leads to a tendency for glucose to exit the cell, which further reduces substrate 

availability for ATP production (19). If ATP-requiring processes increase to maintain 

cellular integrity and function in the presence of reduced ATP production, a further 

oxygen deficit would be expected (17).

The purposes of the study reported here were to determine the hemodynamic and 

metabolic effects of IV infusion of ATP-MgCl2  combination in clinically normal, 

conscious adult horses, and to determine a maximal safe IV infusion rate.

2.2 Materials and Methods

2.2.1 Horses — The study was approved by the Institutional Animal Care and 

Use Committee of Louisiana State University. Six clinically normal female horses (4 

Thoroughbreds and 2 Quarter Horses), ranging in age from 3 to 13 (median, 10.5) years 

old and weighing from 439 to 549 kg (median, 490 kg), were studied. Horses were 

maintained on a routine preventive health care program and were vaccinated and 

dewormed 2 weeks prior to the study. All horses were kept on pasture and conditioned 

to stand in the study area. On the day of study, horses were placed in a research stall 

(1.82 x 1.82 m), and crossed tied. Hay and water were provided ad libitum.

23.3. Instrumentation — Horses were instrumented, using described 

techniques (20). All catheters were placed percutaneously after aseptic preparation of 

the skin and SC infiltration of lidocaine. A 14-gauge, 13.3-cm Teflon catheter* was
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inserted into the left jugular vein for infusion of the ATP-MgCl2  combination. A 14- 

gauge, 5.1-cm Teflon catheter1* was inserted proximal to the first catheter for collection 

of jugular venous blood. A balloon-tipped, flow-directed thermodilution catheter, 6  

which was used for measurement of cardiac output (CO) and pulmonary artery pressures 

(PAP), was inserted into the right jugular vein and advanced until the distal port was 

positioned in the pulmonary artery. Polyethylene tubing* (outside diameter [OD], 1.77 

mm) was inserted into the right jugular vein proximal to the thermodilution catheter and 

advanced until the tip was positioned in the right ventricle for infusion of ice-cold 

polyionic fluids6  for measurement of CO. A 55-ml volume of fluid was infused over 4 

seconds into the right ventricle, using a carbon dioxide-driven injector/and the CO was 

derived on the basis of thermodilution (21). The CO meter* was connected to a 

polygraph,1* and CO curves were generated and recorded on a chart recorder. 1 Arterial 

blood pressures were measured by use of a 20-gauge, 5.1-cm Teflon catheter1 placed in 

the transverse facial or facial artery. All catheter positions were confirmed by evidence 

of characteristic pressure wave forms. All pressures (systemic and pulmonary artery) 

were measured, using a pressure monitor11 with the transducer positioned at the level of 

the point of the shoulder. A silicone catheter1 (OD, 12 mm) with a balloon was placed 

securely in the urinary bladder for urine collection. A continuous base-apex ECGk also 

was obtained.

2.23 The ATP-MgCl2  formulation — The formulation of ATP-MgCl, has 

been described (22). On the basis o f450 kg of body weight, 100 jxmole of ATP/kg"* 

(27.225 g) and 100 llmole ofMgClj/kg" (9.1485 g) were weighed and placed in separate 

sterile beakers. Sterile water (50 ml) was added to the ATP and stirred until the ATP
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was completely dissolved. The pH of the ATP solution was adjusted to 6.5, by addition 

o f 5AT sodium hydroxide (NaOH), then to 7.0, using IN NaOH, and to final pH of 7.4, 

using 0. IN NaOH. It is extremely important not to exceed a pH of 7.4 because the ATP 

will be degraded (22). Sterile water (100 ml) was added to the MgCl2, and the mixture 

was stirred until the MgCl2  dissolved. The MgCl2  solution was then slowly added to the 

ATP solution. The pH was adjusted again to 7.4, using IN initially then 0. IN NaOH. 

The ATP-MgCl2  solution was passed through a 0.22-p.m filtration unit0  and stored at 4 

C until used. To calculate appropriate infusion rates for each horse, the ATP-MgCl2  

solution (200 ml) was added to saline (0.9% NaCl) solution (800 ml) to produce a final 

concentration o f27.225 mg of ATP/ml of solution.

2.2.4 Experimental design — All horses received an IV infusion of the ATP- 

MgCl2  combination via an infusion pump,p beginning at a rate of 0.05 mg of ATP/kg of 

body weight/min. The infusion rate was increased by 0.05 mg/kg/min increments at 10- 

minute intervals until a maximal rate of 1.0 mg/kg/min (maximum volume of 16.65 

ml/horse/min) was achieved. Unless otherwise stated, data were collected prior to the 

start of the infusion (time = 0 ), at the end of each infusion rate, and at 15-minute 

intervals for the next hour after discontinuation of the infusion. Because hemodynamic 

effects have been documented to be dependent on the rate of infusion rather than the 

dose of ATP-MgCl2  preparation (Chaudry, 1982b), baseline data (time = 0) served as a 

control for each horse.

2.2.5 Clinical signs of disease — Heart rate (beats/min), respiratory rate 

(breaths/min), mucous membrane color, capillary refill time (seconds), rectal 

temperature (°C), gastrointestinal borborygmi, and behavior were monitored. Rectal

7*
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temperature was obtained, using a mercury-containing thermometer. Gastrointestinal 

borborygmi were assessed subjectively (increased, normal, decreased, or absent) by the 

same investigator by auscultation (30 s/quadrant) of the abdominal cavity in 4 quadrants 

(right dorsal, right ventral, left dorsal, and left ventral). Specific behavioral alterations 

were recorded.

2.2.6 Hemodynamic variables — Hemodynamic variables that were measured 

included systolic, diastolic, and mean systemic and pulmonary arterial pressures (SAP, 

DAP, MAP and SPAP, DPAP, MPAP, respectively; mm Hg) and CO (L/min). Three 

measurements were taken at each time for each pulmonary and facial arterial pressure. 

Five measurements were taken for CO at each time, and the 3 middle values were used 

for analysis. Cardiac index (Cl; CO -*■ kg of body weight; ml/min/kg), stroke volume 

(SV; CO -5- heart rate [HR]; L/beat), systemic vascular resistance (SRl; MAP CO; mm 

Hg/L/min), and pulmonary vascular resistance (PRL; MPAP CO; mm Hg/L/min) were 

calculated (23). Specific ECG alterations were recorded.

2.2.7 Metabolic variables — Facial arterial blood samples (2 ml each) were 

anaerobically collected into separate heparinized syringes and stored on ice until 

analyzed4  for pH, partial pressure of carbon dioxide (Pacc^; mm Hg), partial pressure of 

oxygen (Pao^ mm Hg), percentage oxygen saturation (Sac^; %), bicarbonate 

concentration (HC03‘; mEq/L), total C0 2  (TC02; mmol/L) and base excess. All samples 

were analyzed within 1 hour of collection. Systemic arterial oxygen content (Ca02; 

ml/dl) was calculated as the sum of oxygen bound to hemoglobin (Hb) and oxygen 

dissolved in plasma ([Hb x %Sao2  x  1.34] + [Pac^ x  0.003]) (24). Oxygen delivery 

(D02; ml/min) was estimated as the product of Ca02  and CO (D0 2  = Ca02  x CO) (24).
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Since Hb concentrations did not significantly change across time for any horse in the 

study, each horse’s baseline Hb value was used in the calculations of Ca02.

2.2.8 Hematologic variables — Jugular venous blood (3 ml) was collected into 

tubes containing EDTA for analysis of PCV (%) and total solids concentration (g/dl). 

Complete blood count and fibrinogen concentration were determinedr prior to the start 

of the infusion, at 1 . 0  mg/kg/min infusion rate, and 1  hour after discontinuation of the 

infusion. Red and WBC indices also were determined at 2 , 6 , and 24 hours after 

discontinuation of the infusion.

22.9 Seram biochemical variables — Jugular venous blood ( 6  ml) was 

collected into tubes containing lithium heparin and was analyzed1  for sodium (mmol/L), 

potassium (mmol/L), chloride (mmol/L), phosphorus (mg/dl), calcium (mg/dl), total 

protein (g/dl), albumin (g/dl), globulin (g/dl), BUN (mg/dl), creatinine (mg/dl), glucose 

(mg/dl), aspartate transaminase (AST; U/L), y-glutamyl transferase (GGT; U/L), 

alkaline phosphatase (ALP; U/L), total bilirubin (mg/dl), creatine kinase (CK; U/L), 

TC0 2  (mmol/L), and anion gap (mmol/L). Samples were collected prior to the start of 

the infusion, at 1 . 0  mg/kg/min infusion rate, and 1  hour after discontinuation of the 

infusion.

2.2.10 Urine output— The urinary bladder was emptied, urine volume (ml) 

was quantified, and specific gravity was determined.

2 J t.ll Statistical analyses — All data were considered continuous and 

evaluated for normality, using the Shapiro-Wilk statistic. Data were considered to 

follow a normal distribution, with failure to reject the null hypothesis o f normality at P 

£ 0.05. Normal data were summarized and graphed as mean ± SEM.
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All quantitative data were analyzed, using the model y = u + horse + time + 

horse * time + 6 , where the effect of horse was considered random, and the interaction 

term was used as the error term for the evaluation o f time. A two-sided hypothesis with 

a  = 0.05 was used to determine significance of the main effect of time. A statistical 

software package' was used for the analyses. Where there was a significant effect of 

time, comparisons with baseline (time=0 ) were made, using adjusted least squares 

means with a Dunnett’s test maintaining an experiment-wise error of a  = 0.05. Thus, 

where a difference from baseline was noted, the / ’-value was £ 0.05.

23  Results

23.1 Clinical signs of disease — Mucous membrane color and capillary refill 

time did not change across time. Respiratory rate (baseline, 12 breaths/min) was 

significantly increased at the 0.6 mg/kg/min (25.5 breaths/min) and 0.75 to 1.0 

mg/kg/min infusion rates, but returned to pre-infusion values on discontinuation of the 

ATP-MgCl2  infusion. Rectal temperature (baseline = 38.08 °C) decreased significantly 

during the 0.9 mg/kg/min infusion rate (37.72 °C) and remained decreased throughout 

the study.

There was a change in gastrointestinal borborygmi activity across time for all 

quadrants. Intestinal motility decreased, starting at the 0.6 mg/kg/min rate, and were 

absent from 0.8-1.0 mg/kg/min. Borborygmi were detected but decreased at 15 minutes 

after infusion and were back to normal by 30 minutes after infusion. Five horses had 

signs o f mild abdominal discomfort at infusion rates > 0.70 mg/kg/min; 2 of these 

horses became extremely agitated and uncomfortable during the maximal infusion rate.
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All signs of abdominal discomfort and agitation ceased immediately on discontinuation 

of the ATP-MgClj infusion.

Sweating in the flank region was observed in all horses as the infusion rate 

increased. Infusion rate at which flank sweating was observed varied among horses; 

however, lowest infusion rate at which it was observed was 0.45 mg/kg/min. One horse 

developed muscle fasciculations and profuse, whole-body sweating during the 0.85 to 

1.0 mg/kg/min infusion rates. Two horses developed jugular pulses at the higher 

infusion rates (> 0.75 mg/kg/min). All horses appeared lethargic, and their appetites 

diminished at infusion rates £ 0.40 mg/kg/min. Once infusion was stopped, all horses 

began to eat, and their overall demeanor improved.

2.3.2 Hemodynamic variables — Cardiac index and HR were significantly 

increased during infusion (Fig 2.1). Cardiac index returned to preinfusion values at 0.85 

mg/kg/min, while HR returned to preinfusion values upon discontinuation of the ATP- 

MgCl2  infusion. Stroke volume decreased across time, but was significantly decreased 

only at the 1.0 mg/kg/min infusion rate. Cardiac output was significantly increased 

between 0.35 and 0.8 mg/kg/min infusion rates. Three horses developed intermittent 

premature ventricular contractions (PVC) during the study period that seemed to be 

associated with cardiac instrumentation rather than ATP-MgCl2  infusion, because they 

were evident prior to the start of the infusion. Systemic vascular resistance and MAP 

were significantly decreased during the infusion and returned to preinfusion values on 

discontinuation of ATP-MgCl2  infusion (Fig 2 .2 ). Systolic and diastolic systemic 

arterial pressures followed a pattern similar to that of MAP. Pulmonary vascular 

resistance did not change across time; however, MPAP was significantly increased
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Figure 2.1 - Mean (±SEM) cardiac index, heart rate, and stroke volume before, during, 
and after IV infusion of an ATP-MgCU solution. *Significant (P l  0.05) difference from 
preinfusion values. Notice the difference in the x-axis scale dining and after infusion.
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during the infusion (Fig 2.3). Systolic PAP was significantly increased at the 0.45, 0.55, 

0.60, and 0.7 mg/kg/min infusion rates, and DPAP was significantly increased during 

the 0.35 and 0.45 to 0.80 mg/kg/min infusion rates and at 15 minutes after 

discontinuation of the infusion.

2 3 3  Metabolic variables — Arterial blood gas values indicated a significant 

decrease in PaC0 2  and HC03  concentrations during the infusion. Once ATP-MgCl2  

infusion was stopped, Paco, returned to preinfusion values. However, HC03  

concentration remained decreased throughout the study. Arterial pH was significantly 

increased during the 0.75 and 0.8 mg/kg/min infusion rates, then significantly decreased 

from baseline at all times after discontinuation of infusion (Fig 2.4). The Pa0 2  and Sa0 2  

were significantly increased during the 0.7 and 0.95 mg/kg/min and 0.75 mg/kg/min 

infusion rates, respectively. The Ca0 2  did not significantly change across time; 

however, D0 2  was significantly increased between 0.35 and 0.8 mg/kg/min infusion 

rates (Fig 2.5).

23.4 Hematologic variables — Packed cell volume was significantly increased 

dining the 1.0 mg/kg/min infusion rate. Plasma total solids concentration was 

significantly decreased beginning at 0 . 2  mg/kg/min and remained decreased throughout 

the study (Fig 2.6). Total WBC count was significantly increased at 2 and 6  hours after 

discontinuation of infusion, but it returned to preinfusion values by 24 hours. At the 1.0 

mg/kg/min infusion rate, eosinophils and lymphocytes were significantly decreased. 

Lymphocytes remained decreased at 1 hour after discontinuation of the infusion. There 

were no significant changes across time for segmented or band neutrophils, monocytes, 

basophils, RBC indices, platelets, or fibrinogen concentration.
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Figure 2.4 - Mean (± SEM) systemic arterial pH, PaC02, and HC03  concentration 
before, during, and after IV infusion of an ATP-MgCl2  solution. See Figure I for key.
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23.5 Seram biochemical variables — There were no significant differences 

across time for glucose and creatinine concentrations or GGT, ALP or CK activities. 

Albumin concentration and AST activity were significantly decreased at the 1.0 

mg/kg/min infusion rate, and BUN and anion gap were significantly increased at the 1.0 

mg/kg/min infusion rate. Bilirubin, globulin, and calcium concentrations were 

significantly decreased, and phosphorus, sodium, and chloride concentrations were 

significantly increased at the 1 . 0  mg/kg/min infusion rate and 60 minutes after 

discontinuation of infusion. Potassium concentration was significantly decreased at 60 

minutes after infusion (Table 2.1).

23.6 Urine output — Urine volume was significantly decreased at all infusion 

rates and returned to preinfusion values once ATP-MgCl2  infusion was discontinued. 

Urine specific gravity was significantly increased between the 0.3 and 0.85 mg/kg/min 

infusion rates, then significantly decreased from baseline at 30,45, and 60 minutes after 

discontinuation of infusion (Fig 2.7).

2.4 Discussion

Intravenous infusion of a combination of ATP and MgCI2  in clinically normal, 

conscious, adult horses increased CO, decreased systemic vascular resistance and 

caused mild pulmonary hypertension. Magnitude of the hemodynamic alterations was 

dependent on the rate o f infusion. For the horses of this study, maximal safe infusion 

rate was 0.3 mg/kg/min.

Adenosine triphosphate is principally an endothelium-dependent vasodilator that 

is rapidly metabolized and has a short duration of action (25). It binds to 

purinoreceptors (Pj) located on vascular smooth muscle (P ^ receptor) and endothelial
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Table 2.1 - Seram biochemical variables (mean ±SEM) before infusion of an ATP- 
MgCl2  solution, at a rate of 1.0 mg/kg/min and at 60 minutes after discontinuation of 
the infusion.

Variable Pre-Infusion 1.0 mg/kg/min Post-infusion
Infusion Rate (60 min)

Glucose (mg/dL) 113.00±8.50 129.17 ±10.29 138.17±8.13

Aspartate 
aminotransferase (U/L)

354.33 ±91.03 ♦313.50±81.32 329.00±74.18

Gamma glutamyl 
transferase (U/L)

12.67 ±0.92 11.83 ±0.87 13.67±1.12

Alkaline phosphatase 
(U/L)

247.67±39.80 271.50±45.01 293.50±59.43

Creatine phosphokinase 
(U/L)

234.33 ±34.27 258.67±35.84 280.00±36.82

Bilirubin (mg/dL) 2.28 ±0.44 ♦1.93 ±0.39 ♦2.02 ±0.45

Albumin (g/dL) 3.45 ±0.12 ♦3.08 ± 0 . 1 0 3.30 ±0.12

Globulin (g/dL) 3.97 ±0.37 ♦3.52 ±0.39 ♦3.75 ±0.36

Blood urea nitrogen 
(mg/dL)

17.17 ±0.98 ♦18.67±1.09 18.17 ±0.95

Creatinine (mg/dL) 1.47 ±0.11 1.67±0.07 1.53 ±0.05

Calcium (mg/dL) 12.02 ±0.24 ♦10.33 ±0.08 ♦11.05±0.21

Phosphorus (mg/dL) 3.12 ±0.34 ♦9.53 ±1.02 ♦6.73 ±0.66

Sodium (mmol/L) 135.17±0.83 ♦137.00 ±0.52 ♦137.17±0.31

Potassium (mmol/L) 3.62 ±0.12 3.68±0.14 ♦3.10±0.13

Chloride (mmol/L) 99.83 ±0.83 ♦101.33 ±0.76 ♦101.67± 1.15

Anion Gap (mmol/L) 6.60±0.96 ♦10.33 ±0.88 7.77 ±1.46

♦Significant (P £ 0.05) difference from preinfusion values.
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(P2Y receptor) cells (26). Activation of the excitatory P ^  receptor causes 

vasoconstriction, whereas activation of the inhibitory P2Y receptor causes vasodilatation 

(26). The vasodilatory effects are attributable to increased formation of nitric oxide, 

which increases smooth muscle cell concentration of cyclic GMP, the intracellular 

messenger involved in smooth muscle relaxation (25). When ATP is degraded by 

ectonucleotidases into adenosine, a P,-purinoreceptor (A,-A3) is activated, leading to 

vascular smooth muscle relaxation (27). Magnesium also is a potent vasodilator via its 

important role in regulating arteriolar tone and calcium exchange in vascular smooth 

muscle (28).

Results of studies have indicated that administration of ATP or MgCl2  alone 

after shock or ischemia fails to improve organ or animal survival, or both (2). Therefore, 

it appears that ATP, together with MgCl2  treatment after shock and ischemia, is required 

for its effectiveness (5). Because ATP and ADP exist in cells as magnesium complexes, 

and because most ATP reactions require not only ATP as a substrate but also 

magnesium as a cofactor, administration of magnesium in conjuction with ATP is 

required for preservation of cell and organ function after a variety of insults (5). Results 

of other studies have indicated that tissue and mitochondrial magnesium concentrations 

decrease appreciably after ischemia and reperfusion and that the ATP-MgCl2  

combination, but not ATP or MgCl2  alone, substantially increases tissue and 

mitochondrial magnesium concentrations after ischemia (29).

In clinically normal, conscious, adult males, ATP-MgCl, infusion (0.2 to 0.4 

mg/kg/min) increases CO and HR and causes peripheral vasodilatation without 

accompanying systemic hypotension (6 ). Stroke volume also increases by 14%,
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suggesting that the ATP-MgCl2  combination may have mild inotropic effects (6 ). 

Tachycardia that develops in association with ATP-MgCl2  infusion may be attributed to 

sympathetic nervous system stimulation (6 ). Similar increases in CO and HR were 

observed in our horses at comparable infusion rates. Appreciable changes in HR were 

not observed during ATP-MgCl2  infusion in rats during shock (11). However, rats were 

anesthetized, and their baseline HR were higher subsequent to shock. Effects of ATP- 

MgCl2  administration to horses during hemorrhagic or endotoxic shock or in 

anesthetized horses may be different than those observed in the study reported here. The 

hemodynamic effects o f IV infusion of ATP-MgCl2  combination during shock in horses 

warrants further investigation.

As the maximal infusion rate was approached, CO was no longer different from 

preinfusion values. Stroke volume decreased across time; therefore, despite the 

sustained increase in HR, CO returned to baseline. The HR may have been too high to 

allow sufficient atrial and ventricular filling, leading to a decrease in CO (23).

In a study evaluating cardiac catheterization in humans, incidence of 

complications associated with the procedure was approximately 23% (30). Severity of 

the complications ranged from mild arrhythmias to acute cardiac perforation (30). 

A rrh y th m ia s  associated with cardiac catheterization procedures in children developed 

with a frequency of 6.5% (31). Three of 6  horses in the study reported here developed 

transient PVC without any noticeable deleterious effects.

Infusion of the ATP-MgCI2  combination into the pulmonary artery is a 

recognized treatment for pulmonary hypertension in children (32). Additionally, 

pulmonary hypertension secondary to sepsis can be successfully reversed by
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administration of the ATP-MgCl2  combination (33). In contrast, horses of this study 

developed mild pulmonary hypertension during infusion. Despite pulmonary 

hypertension, pulmonary vascular resistance did not change subsequent to the increase 

in CO. Results of in vitro studies have indicated that a variation in response to ATP 

administration can develop in different vascular beds and in vessels under different 

vascular tensions (26). In certain blood vessels, ATP can stimulate smooth muscle 

directly (via P2 X receptors), causing vasoconstriction (34). In other vascular beds, ATP 

stimulates the endothelial P2Y receptor, causing vasodilatation (26). If ATP is 

metabolized to adenosine, activation of the P,-purinoreceptors can lead to vascular 

relaxation (27). Under resting tension, ATP induces vasoconstriction in certain vascular 

beds; however, if tension is increased, vasodilatation occurs (26). Responsiveness of 

vessels to ATP also differs, depending on the concentration of ATP administered. Low 

concentrations cause vasodilatation, whereas high concentrations cause transient 

contraction followed by relaxation (27).

Another explanation for the pulmonary hypertension that developed in our 

horses is that ATP and norepinephrine can act as cotransmitters from the sympathetic 

nerves in some tissues (27). This cotransmission enhances norepinephrine- and ATP- 

induced vasoconstriction. However, ATP-induced vasoconstriction may be masked by 

its potent relaxant effects mediated by the endothelium (27).

All horses became lethargic, and their appetites diminished as the infusion rate 

increased. Five of six horses manifested signs of abdominal discomfort Gastrointestinal 

borborygmi decreased during higher infusion rates. In humans, transient nausea was 

observed at infusion rates greater than 0.3 mg/kg/min (6 ). The exact mechanism for
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nausea observed in humans and alterations in behavior and appetite observed in our 

horses is not known, but could be associated with decreased gastrointestinal motility.

As the rate of the infusion increased, respiratory rate increased and Paco2  

decreased. The increase in respiratory rate likely was attributable to sympathetic nervous 

system stimulation and pulmonary hypertension. The decreased Paco2  values and 

resultant increase in pH likely were associated with tachypnea. Bicarbonate 

concentration decreased over time. On discontinuation of the infusion, PaC0 2  returned to 

baseline values and HC03  concentration remained decreased, which ultimately resulted 

in decreased pH. The decrease in HC03’ concentration in our horses may have been 

related to fluid administration during CO determination. Changes in D0 2  paralleled 

changes in CO, which was expected, because Ca02  was not significantly altered across 

time, and because D0 2  is the product of Ca0 2  and CO. Similar results were obtained in 

a canine hemorrhagic shock model in which Ca02  did not change across time; however, 

myocardial oxygen delivery was increased because of an increase in coronary arterial 

blood flow (35).

Although total solids concentration decreased over time, PCV was only 

significantly different from the preinfusion value during the maximal infusion rate. The 

decrease in total solids concentration was likely associated with hemodilution secondary 

to fluid administration associated with CO determination (minimum of 1,650 ml/h). A 

possible reason why PCV did not change accordingly is because of splenic contraction. 

This became evident when PCV significantly increased at the 1.0 mg/kg/min infusion 

rate. The leukocytosis observed at 2 and 6  hours after discontinuation of the infusion
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may have been associated with a stress or inflammatory response secondary to drug 

administration.

Numerous serum biochemical alterations were observed in our horses. High 

phosphorus and sodium concentrations likely were associated with administration of the 

ATP disodium salt. Chloride concentration likely increased subsequent to 

administration o f the MgCl2. In healthy, conscious humans, significant electrolyte 

alterations were not observed during ATP-MgCl2  infusion at the recommended 

therapeutic dose (6 ). However, our horses received approximately 2.5-fold the 

recommended therapeutic dose of the ATP-MgCl, combination over the course o f the 

study. The decrease in potassium concentration could be secondary to the increased 

sodium concentration or alkalosis. Albumin and globulin concentrations likely 

decreased because of hemodilution. Reasons for alterations in AST, bilirubin, calcium, 

and BUN values observed in our horses are not known. In another study in humans (6 ), 

infusion o f ATP-MgCl2  did not alter chemistry variables.

The substantial decrease in urine volume after the start of the infusion was 

related to incorrect determination of baseline urine volume. The urinary bladder should 

have been emptied several times at 1 0 -minute intervals prior to determining the baseline 

urine volume, because urine volume was quantified at 1 0 -minute intervals during 

infusion. The increase in urine specific gravity during infusion may be related to 

vasoconstriction of the renal vasculature (36). Once infusion was stopped, rebound 

vasodilatation may have developed, resulting in renal diuresis and a subsequent decrease 

in urine specific gravity. Results of numerous studies have documented that adenyl 

compounds have variable and inconsistent effects on the net flow of blood through the
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kidney (36). The inconsistency in results suggest that different segments of the renal 

vasculature may have different responses to adenyl compounds, and responses also vary 

among species (36).

The effects of volume of ATP-MgCl2  infused during the study may have biased 

the results obtained, because incremental increases in infusion rate of ATP-MgCl2  are 

paralleled by increasing volumes of infusion. However, the authors do not believe that 

the volume of the ATP-MgCU preparation infused (maximum of 16.65 ml/horse/min) 

was sufficient to significantly affect the results obtained in this study.

The maximal safe infusion rate for the horses of the study reported here was 0.3 

mg/kg/min. Our criteria for determination of this maximum rate were based on the 

maximal value prior to which significant alterations in hemodynamic variables were 

observed. At a rate of 0.35 mg/kg/min, Cl, MAP, and SRl were significantly different 

from baseline values. Therefore, we selected the 0.3 mg/kg/min rate as our maximal, 

safe infusion rate.

In conclusion, IV administration of an ATP-MgCl2  combination in healthy, 

conscious, adult horses resulted in various metabolic and hemodynamic alterations that 

are without appreciable detrimental effects. Further investigation into the various 

responses of regional vascular beds and tissues to ATP-MgCl2  administration in horses 

are necessary before this combination can be recommended clinically as a therapeutic 

agent during low-flow or septic conditions.

2.5 Product Information

“Angiocath, Becton Dickson Infusion Therapy Systems Inc, Sandy, Utah. 

bQuik-Cath, Baxter Healthcare Corporation, Deerfield, 111.
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Tentalumen thermodilution catheter 41216-01, Abbott Critical Care Systems, Abbott

Laboratories, Hospital Products Division, North Chicago, 111.

‘‘Intramedic polyethylene tubing model PE260, Becton Dickson, Sparks, Md.

'Normosol, Abbott Laboratories, North Chicago, Ql.

Injector 500, Columbus Instruments, Columbus, Ohio.

BCardio Max H model 85 thermodilution cardiac output computer, Columbus 
Instruments, Columbus, Ohio.

’’Polygraph model 7D, Grass Instruments, Quincy, Mass.

'Chart recorder model 25-60, Grass Instruments, Quincy, Mass.

jInsyte-A arterial catheterization unit model 5820, Becton Dickinson Deseret Medical, 
Sandy, Utah.

kPressure/ECG monitor model 90602A, Spacelabs Inc, Redmond, Wash.

'Uterine flushing catheter model V-PUF-150, Cook Veterinary Products, Bloomington, 
Ind.

'"Adenosine 5’-triphosphate disodium salt A3377, Sigma-Aldrich, Inc, St Louis, Mo.

"Magnesium chloride hexahydrate M2670, Sigma-Aldrich, Inc, St Louis, Mo.

"Cellular acetate filter system 25932-200, Coming, Coming, NY.

Tlo-gard6000 volumetric infusion pump, Travenol Laboratories Inc, Deerfield, 111.

'’pH/blood gas analyzer model 238, Chiron Diagnostics Corporation, East Walpole, 
Mass.

'System 9000 automated cell counter, Biochem Immunosystems Inc, Allentown, Pa. 

S0lympus Reply, Olympus Corporation Clinical Instrument Division, Irving, Tex.

*Proc mixed SAS version 6.12, SAS Institute, Cary, NC.

2.6 References

1. MacLean LD. Causes and management of circulatory collapse. In: Sebastian DC, ed. 
Davis-Christopher textbook of surgery. Philadelphia: WB Saunders Co, 1977;65-94.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

2. Chaudry EH. Cellular mechanisms in shock and ischemia and their correction. Am J  
Physiol 1983^45 JE117-34.

3. Chaudry EH, Baue AE. Overview of hemorrhagic shock. In: Cowley RA, Trump BF, 
eds. Pathophysiology of Shock, Anoxia, and Ishcemia. Baltimore: William & Wilkins, 
1982^03-19.

4. Chaudry EH, Baue AE. The use of substrates and energy in the treatment of shock. In: 
Lefer AM, Saba TM, Mela LM, eds. Advances in Shock Research. New York: Alan R. 
Liss, 1980;27-46.

5. Chaudry IH. Use of ATP following shock and ischemia. Ann NY Acad Sci 
1990;603:130-41.

6 . Chaudry IH, Keefer JR, Barash P, et al. ATP-MgC12 infusion in man: increased 
cardiac output without adverse systemic hemodynamic effects. Surg Forum 1984;35:13- 
5.

7. Sumpio BE, Chaudry IH, Baue AE. Adenosine triphosphate-magnesium chloride 
ameliorates reperfusion injury following ischemia as determined by phosphorus nuclear 
magnetic resonance. Arch Surg 1985;120:233-40.

8 . Clemens MG, Chaudry IH, Baue AE. Increased coronary flow and myocardial 
efficiency with systemic infusion of ATP-MgCl2. Surg Forum 1985;36:244-6.

9. Wang P, Ba ZF, Chaudry IH. ATP-MgCl2  restores depressed endothelial cell 
function after hemorrhagic shock and resuscitation. Am J Physiol 1995;268:H1390-6.

10. Robinson DA, Wang P, Chaudry IH. Administration of ATP-MgCl2  after trauma- 
hemorrhage and resuscitation restores the depressed cardiac performances. J Surg Res 
1997;69:159-65.

11. Wang P, Ba ZF, Chaudry IH. Differential effects of ATP-MgCl2  on portal and 
hepatic arterial blood flow after hemorrhage and resuscitation. Am J Physiol 
1992;263:G895-900.

12. Singh G, Chaudry KI, Chaudry IH. ATP-MgCl2  restores gut absorptive capacity 
early after trauma-hemorrhagic shock. Am J Physiol 1993;264:R977-83.

13. Hirasawa HS, Oda S, Hayashi H, et al. Improved survival and reticuloendothelial 
function with intravenous ATP-MgCl2  following hemorrhagic shock. Circ Shock 
1983;11:141-8.

14. W angP,TaitSM ,BaZF,etal. ATP-MgCl2  administration normalizes macrophage 
cAMP and B-adrenergic receptors after hemorrhage and resuscitation. Am J  Physiol 
1994267-.G52-8.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

15. Wang P, Ba ZF, Morrison MH, et a1. Mechanism of the beneficial effects of ATP- 
MgCl2  following trauma-hemorrage and resuscitation: downregulation of inflammatory 
cytokine (TNF, EL-6 ) release. J Surg Res 1992;52:364-71.

16. McAnulty JF, Stone WC, Darien BJ. The effects of ischemia and reperfusion on 
mucosal respiratory function, adenosine triphosphate, electrolyte, and water content in 
the ascending colon of ponies. Vet Surg 1997;26:172-81.

17. Smart CJ, Rowlands SD. Oxygen consumption and hepatic metabolism in 
experimental post-hemorrhagic shock. J Trauma 1972;12:327-34.

18. Chaudry IH, Sayeed MM, Baue AE. The effect of low ATP on glucose uptake in 
soleus muscle during hemorrhagic shock. Proc Soc Exp Biol Med 1973;144:321-5.

19. Schumer W. Localization of the energy pathway block in shock. Surgery 
1968;64:55-9.

20. Moore RM, Muir WW, Bertone AL, et al. Characterization o f the hemodynamic 
and metabolic alterations in the large colon of horses during low-flow ischemia and 
reperfusion. Am J Vet Res 1994;55:1444-53.

21. Muir WW, Skarda RT, Milne DW. Estimation of cardiac output in the horse by 
thermodilution techniques. Am J Vet Res 1976;37:697-700.

22. Chaudry IH. Preparation of ATP-MgCl2  and precautions for its use in the study and 
treatment of shock and ischemia. Am J Physiol l982;242:R604-5.

23. Guyton AC. Textbook of Medical Physiology. Eight ed. Philadelphia: W.B. 
Saunders, 199l;152,221.

24. Hodgson DS, Steffey EP, Grandy JL, et al. Effects of spontaneous, assisted, and 
controlled ventilatory modes in halothane-anesthetized geldings. Am J Vet Res 
1986:47:992-6.

25. Fiscus RR. Mechanisms of endothelium-mediated vasodilation. Semin Thromb 
Hemost 1988;14:12-22.

26. Kennedy C, Delbro D, Bumstock G. P2-purinoceptors mediated both vasodilation 
and vasoconstriction of the isolated rat femoral artery. Eur J Pharmacol 1985;107:161- 
8.

27. Bumstock G, Kennedy C. A dual function for adenosine 5r-triphosphate in the 
regulation of vascular tone. Circ Res 1986;58:319-30.

28. Altura BM, Altura BT. Magnesium and vascular tone and reactivity. Blood Vessels 
1978;15:5-16.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

29. Chaudry IH, Clemens MG, Baue AE. The role of ATP-magnesium in ischemia and 
shock. Magnesium 1986;5:211-20.

30. Nunes GL, Nicolela Jr. EL, Sousa GM, et al. Complicac oes atuais do cateterismo 
cardiaco. Analise de 1000 pacientes. Arq Bras Cardiol 1991;56:109-13.

31. Schumacher G, Genz T, Lorenz HP, et al. Aktuelles risiko der 
herzkatheteruntersuchung und angiokardiographie im kindesalter. Eine prospektive 
studie. ZKardiol 1990;79:324-35.

32. Brook MM, Fineman JR, Bolinger AM, et al. Use of ATP-MgCl2  in the evaluation 
and treatment of children with pulmonary hypertension secondary to congenital heart 
defects. Circulation 1994;90:1287-93.

33. Ali A, Goldberg RN, Suguihara C, et al. Effects of ATP-magnesium chloride on the 
cardiopulmonary manifestations of group B streptoccal sepsis in the piglet. Pediatr Res 
1996;39:609-15.

34. Houston DA, Bumstock G, Vanhoutte PM. Different P2  - purinergic receptor 
subtypes of endothelium and smooth muscle in canine blood vessels. J Pharmacol Exp 
Ther 1987;241:501-6.

35. Horton JW, Landreneau RJ, Coin CD. Cardiovascular effects of intravenously 
given ATP-MgCl2  in canine hemorrhagic shock. Surg Gynecol Obstet 1985;160:195- 
203.

36. Bumstock G. Cholinergic and purinergic regulation of blood vessels. In: Bohr DF, 
Somlyo AP, Sparks HV, eds. Handbook of Physiology, Section 2: The Cardiovascular 
System. Bethesda: American Physiology Society, 1980;567-612.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 3. SYSTEMIC AND LOCAL COLONIC 
HEMODYNAMIC ALTERATIONS DURING INTRAVENOUS 
INFUSION OF ATP-MgCl2 IN CLINICALLY HEALTHY 
ANESTHETIZED HORSES*

♦Reprinted by permission of the American Journal of Veterinary Research
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3.1 Introduction

Acute gastrointestinal tract disease (colic) is the leading natural cause of death in 

adult horses (1,2). Gastrointestinal tract ischemia commonly develops secondary to 

low-flow/no-flow conditions, with small intestinal volvulus or incarceration (3,4) and 

large colon volvulus (5-7) being common causes. In one study, strangulating 

obstructive lesions were associated with the highest mortality (75%) of all types of colic 

(8 ). Large colon abnormalities account for up to 50% of the horses that die or are 

euthanatized subsequent to colic (2-4).

In horses, strangulating volvulus of the ascending colon has been reported to 

have a mortality approaching 80% (7). The disease is characterized by colonic luminal 

obstruction and vascular occlusion secondary to the volvulus, thereby resulting in 

colonic ischemia, mucosal necrosis and vascular thrombosis (9). Colonic blood flow 

has been shown to remain significantly below baseline values for at least 4 hours after 

correction of complete arteriovenous occlusion in horses (10). The high mortality 

associated with colonic volvulus may be related to a sustained reduction of blood flow 

and hypoperfusion (due to increased vascular resistance) after surgical correction and 

continued ischemic injury. Endothelial damage occurs in the colonic vasculature 

subsequent to ischemia-reperfusion and can be exacerbated by endotoxin (11). The 

sustained decrease in colonic blood flow may be associated with endothelial damage in 

the colonic circulation, leading to a loss of endothelium-derived vasorelaxants and 

subsequent vasoconstriction. Many of these horses develop systemic hypotension 

owing to hypovolemia and endotoxemia, which contribute to decreased splanchnic 

blood flow. Additionally, colonic mucosal ATP content has been shown to decrease
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92% during ischemia and recovers to only 44% of control value after reperfusion, 

thereby limiting substrate availability for cellular metabolic functions (12). The 

decreased blood flow and tissue ATP content that occurs during colonic ischemia can 

lead to disruption of the mucosal barrier and transmural passage of endotoxin into the 

systemic circulation. If sufficient endotoxin enters the systemic circulation, death can 

ensue.

Adenosine triphosphate is principally an endothelium-dependent vasodilator that 

is rapidly metabolized and has a short duration of action (13). The vasodilatory effects 

o f ATP are mediated primarily through activation of purinoreceptors located on 

endothelial cells (P2Y) (14). The P2Y receptors are coupled to G-proteins and involve 

second messenger systems (15). Activation of the inhibitory P2Y receptor results in 

increased formation of nitric oxide (NO), which increases smooth muscle cell 

concentrations of cyclic GMP, the intracellular messenger involved in smooth muscle 

relaxation (13). Endothelial-derived hyperpolarizing factor, and possibly prostacyclin, 

are also generated which contributes to the relaxation response (15). When ATP is 

degraded by ectonucleotidases into adenosine, an adenosine purinoreceptor (A^ is 

activated, leading to vascular smooth muscle relaxation (16). The A2  receptors are also 

coupled to G-proteins (15). Magnesium is also a potent vasodilator via its important 

role in regulating arteriolar tone and calcium exchange in vascular smooth muscle (17).

Administration of adenosine trisphosphate-magnesium chloride combination 

(ATP-MgCy in humans results in peripheral vasodilatation and increased cardiac 

output (CO) (18). These findings suggest its potential beneficial use in patients with 

hypoperfusion (low-flow) or organ ischemia. The use of ATP-MgCI2  following
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hemorrhagic shock and other adverse circulatory conditions in both humans and 

laboratory animals has been shown to improve mitochondrial function and tissue ATP 

content (19,20); restore organ function, blood flow, and perfusion (20-23); improve 

reticuloendothelial function, survival time, and survival rate (24,25); and down regulate 

the synthesis and release of inflammatory cytokines (26).

We have recently investigated the hemodynamic and metabolic alterations 

associated with intravenous infusion of ATP-MgCl2  in clinically healthy, conscious, 

adult horses (27). Intravenous administration of ATP-MgCl2  caused a rate-dependent 

increase in CO and decrease in systemic vascular resistance (SRJ without any 

appreciable detrimental effects. Based on these results, ATP-MgCl2  infusion may 

potentially increase perfusion to the gastrointestinal tract. Administration of ATP- 

MgCl2, which has vasodilatory actions, increases CO and delivers an energy substrate 

(ATP) and co-factor (Mg) directly to the tissues, may offer a potential therapy for horses 

with intestinal ischemia, endotoxemia and shock. Therefore, the purpose of this study 

was to characterize the local colonic and systemic hemodynamic alterations associated 

with intravenous infusion of ATP-MgCl2  in clinically normal, anesthetized horses. We 

hypothesized that administration of ATP-MgCl2  would cause a rate-dependent decrease 

in colonic and systemic vascular resistance, principally via vasodilatation.

3.2 M aterial and Methods

3.2.1 Horses - The study was approved by the Institutional Animal Care and Use 

Committee of Louisiana State University. Twelve clinically healthy grade horses (9 

females and 3 castrated males), ranging in age from 3 to 13 (median, 7) years and in 

body weight from 315 to 461 (median, 395) kg, were studied. All horses were
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vaccinated for eastern and western encephalitis and tetanus toxoid 3 months prior to the 

start o f the study. Horses were maintained on pasture prior to the study. Food, but not 

water, was withheld for 1 2  hours prior to the study to decrease the colon contents, which 

facilitated its manipulation.

3.2.2 Instrumentation - Horses were sedated with xylazine hydrochloride1  (O.S 

mg/kg, IV) and butorphanol tartrateb (0.02 mg/kg, IV). All catheters were placed 

percutaneously after aseptic preparation of the skin and desensitization by subcutaneous 

infiltration of lidocaine. A 14-gauge, 13.3-cm Teflon catheter® was inserted into the left 

jugular vein for administration o f anesthetic drugs and isotonic polyionic fluids. A 

balloon-tipped, flow-directed thermodilution catheter*, which was used for measurement 

of CO and pulmonary artery pressures (PAP), was inserted into the right jugular vein 

and advanced until the distal port was positioned in the main pulmonary artery. 

Polyethylene tubing1  (1.77 mm OD) was inserted distal to the left jugular catheter and 

advanced until the tip was positioned in the right ventricle for infusion of ice-cold 

polyionic fluidsf for measurement of CO. A 55-ml volume of fluid was infused over 4 

seconds into the right ventricle, using a carbon dioxide-driven injector*, and the CO was 

derived on the basis of thermodilution (28). The dead space of the injection catheter 

was 5 ml. Cardiac output and PAP were recorded, using a CO meter1*. Thermodilution 

signal curves were recorded for each cardiac output measurement Polyethylene tubing* 

(1.57 mm OD) was inserted into the right jugular vein proximal to the thermodilution 

catheter and was advanced until the tip was positioned in the right atrium for 

determination of mean right atrial pressure (MRAP). All catheter positions were 

confirmed by the presence of characteristic pressure wave forms.
" f
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General anesthesia was induced with guaifenesin* (50 mg/kg, IV)and sodium 

thiopental (4.4 mg/kg, IV). After anesthesia induction, a loading dose o f sodium 

pentobarbital1 (7.5 mg/kg, IV) was administered and general anesthesia was maintained 

by a continuous infusion of sodium pentobarbital (5 to 15 mg/kg/h). Horses were 

mechanically ventilated1” with 1 0 0 % oxygen at a rate of 6  to 1 2  breaths/min to a peak 

inspiratory pressure of approximately 20 cm of H2 0. Arterial blood gas analyses, packed 

cell volume (%) and total plasma protein concentrations (g/dl) were monitored during 

the study to assess each horse’s metabolic/anesthetic status and to make adjustments in 

anesthetic management if necessary. Isotonic polyionic fluids were administered at a 

rate of 5 to 10 ml/kg/h. Arterial blood pressures were measured, using a 20-gauge, 5.1- 

cm Teflon catheter" placed in the facial artery. A 14-gauge, 5.1-cm Teflon catheter" was 

inserted proximally into both the left and right jugular veins for infusion of the ATP- 

M gCl/ combination and for collection of jugular venous blood, respectively.

All horses were positioned in dorsal recumbency and prepared for surgery. After 

performing a ventral median celiotomy, the ascending colon was exteriorized, placed on 

a warm water heating padq, and instrumented (Fig 3.1). Doppler ultrasound flow probes 

(3 mm)r were placed externally around the right ventral and dorsal colonic arteries, and 

colonic blood flow was measured continuously and recorded. A 20-gauge, 5.1-cm 

Teflon catheter was placed in each artery and vein of the ventral and dorsal colon, distal 

to the flow probes, for determination of ventral and dorsal colonic arterial and venous 

pressures. A 14-gauge, 5.1-cm Teflon catheter was placed in the ventral colon vein and 

a 20-gauge, 5.1-cm Teflon catheter was placed in the ventral colon artery, both distal to 

the pressure catheters, for collection of colonic venous and arterial blood, respectively.
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Figure 3.1 -  Instrumentation of the equine ascending colon to measure arterial blood 
flow, arterial and venous pressures, mucosal and serosal perfusion, and collect arterial 
and venous blood. DBFP = Doppler ultrasound blood flow probes; VCAC = ventral 
colon arterial catheter; VCVC = ventral colon venous catheter; DC AC = dorsal colon 
arterial catheter; DC VC = dorsal colon venous catheter; VC = ventral colon; DC = 
dorsal colon; PF = pelvic flexure; LDSFP = laser Doppler serosal flow probe; LDMFP 
laser Doppler mucosal flow probe.
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A surface laser Doppler flow probe1  was positioned on the serosal surface and a needle 

probe1 was positioned in the mucosaof the pelvic flexure of the ascending colon to 

measure seromuscular and mucosal perfusion, respectively. All blood flow probes and 

pressure transducers were interfaced with physiographs", and flow and pressure curves 

were generated and recorded on chart recordersv. A continuous base-apex ECG was also 

obtained.

323  Experimental design - The formulation of ATP-MgCl2  has been described 

(29). Twelve horses were equally and randomly assigned to 1 of 2 groups. Group-1 

horses served as saline controls. Group-2 horses received an IV infusion of the ATP- 

MgCl2  preparation via an infusion pumpw, beginning at a rate of 0.1 mg of ATP/kg of 

body weight/min. The infusion rate was increased by 0.1 mg/kg/min increments at 10- 

minute intervals until a maximum rate of 1.0 mg/kg/min was achieved. Unless 

otherwise stated, data were collected prior to the start of the infusion (time=0 ), at the 

end of each infusion rate, at 1-minute intervals for the first 5 minutes after 

discontinuation of the infusion, and then at IS, 30,45, and 60 minutes after 

discontinuation of the infusion. Control horses received an equivalent volume of 0.9% 

NaCl over the same time. The horses were euthanatized at the conclusion of the study 

with an overdose o f sodium pentobarbital (100 mg/kg, IV).

3.2.4 Systemic hemodynamic variables - Systemic hemodynamic variables that 

were measured included systolic, diastolic, and mean systemic and pulmonary arterial 

pressures (SAP, DAP, MAP and SPAP, DPAP, MPAP; mm Hg, respectively), MRAP 

(mm Hg), and CO (L/min). Three measurements were taken at each time for each 

pulmonary and facial arterial and right atrial pressure and were used in the analyses.
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Five measurements were taken for CO at each time, and the 3 middle values were used 

in our analyses. Cardiac index (Cl; CO -5- kg of body weight;ml/min/kg), systemic 

vascular resistance (SRL; [MAP - MRAP] -5- CO; mm Hg/L/min), and pulmonary 

vascular resistance (PR,,; MPAP -5- CO; mm Hg/L/min) were calculated. Specific ECG 

alterations were recorded.

3.2.5 Colonic hemodynamic variables - Colonic hemodynamic variables that 

were measured included mean ventral and dorsal colonic arterial and venous pressures 

(VCAP, DCAP, VCVP, DC VP; mm Hg, respectively), ventral and dorsal colonic blood 

flow (VCF and DCF; ml/min), colonic mucosal perfusion (CMP; capillary perfusion 

units [cpu]), and colonic serosal perfusion (CSP; cpu). Variables that were calculated 

included overall mean colonic arterial and venous pressures (OCAP; [DCAP + VCAP] 

-5- 2 and OCVP; [VCAP - VCVP] -*• 2; mm Hg), overall mean colonic arterial blood 

flow (OCF; [VCF + DCF] -5- 2; ml/min), ventral and dorsal colonic vascular resistances 

(DCRl; [DCAP - DCVP] -  DCF; mm Hg/ml/min, and VCR,.; [VCAP - VCVP] + VCF; 

mm Hg/ml/min, respectively), and overall colonic vascular resistance (OCRL; 

[DCRt+VCRJ -5-2 ; mm Hg/ml/min).

3.2.6 Nitric oxide analyses - Ventral colonic arterial and venous blood ( 6  ml 

each) were collected into tubes containing lithium heparin and processed for immediate 

analysis of NO concentrations in fresh plasma. Samples were centrifuged at 1,500 X g 

for 5 minutes and the plasma was harvested and deproteinized by adding 100 pi of 

trichloroacetic acid (10%) solution to 100 pi of the sample. The samples were vortexed 

for 30 seconds and then allowed to stand for 15 minutes. The samples were centrifuged 

at 14,000 x g for 5 minutes. The supernatant was removed for analysis. Aliquots (3 pi)
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of plasma were added to a purge chamber of vanadium chloride (100 C) in IN HC1 

under a nitrogen atmosphere. Nitric oxide (bound or in the form of nitrate) liberated 

from the samples into the gaseous headspace was conducted to the NO analyzer11, where 

it reacted with ozone to produce a chemiluminescent signal in the 6500-8000 A range. 

The amount of light generated was proportional to the NO concentrations, which was 

calculated from a standard curve of known nitrate concentrations. Each sample was 

analyzed in triplicate. The limit of detection for the analysis is 1 picomole (1 pM of 

nitric oxide in 1  pi of plasma).

3.2.7 Statistical analyses - All data were considered continuous and evaluated 

for normality, using the Shapiro-Wilk statistic. The data were considered to follow a 

normal distribution if there was failure to reject the null hypothesis of normality at p 5 

0.05. Data that were not normally distributed were log transformed, such that they 

followed a normal distribution. Data were summarized and graphed as mean ± SEM.

All data were analyzed, using the model: y = p  + Group + Horse(Group) + Time 

+ Group*Time + Horse*Time + 6 , where y = dependent variable; |i  = overall mean; 

Group = fixed effect of group (0.9% NaCl or ATP); Horse(Group) = random effect of 

horse nested within Group; Time = fixed effect of time of measurement; GroupTime = 

fixed effect of Group interaction with Time; HorseTime = random effect of Horse 

interaction with Time; and € = residual error.

In this model, the effect of Horse was considered random and was the error term 

for the evaluation of Group. All other fixed effects were evaluated, using the combined 

variance of the Horse interaction term and the residual error. A two-sided hypothesis 

with p £ 0.05 was used to determine significance of the fixed model effects (Group,
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Time, Group*Time). Where there were significant model effects, multiple comparisons 

were made between groups at different time periods, and within groups compared to 

baseline, using adjusted least squares means, maintaining an experiment-wise error of 

0.05. Thus, where a significant difference is noted between time periods and compared 

to baseline, the p value was £ 0.05. Proc univariate and Proc mixedy was used for the 

analyses.

33  Results

33.1 Systemic hemodynamic variables - There were no significant differences 

between the control and treatment groups for any measured or calculated variable pre­

infusion (baseline). There were no consistently significant changes across time for any 

measured or calculated systemic hemodynamic variable in group- 1  horses with the 

exception of MRAP (Table 3.1). In group-2 horses, significant changes across time 

were present for several systemic hemodynamic variables (Table 3.2; Fig 3.2).

3 3 3  Colonic hemodynamic variables - There were no significant differences 

between the control and treatment groups for any measured or calculated variable pre- 

infusion. No significant alterations were observed for any local colonic hemodynamic 

variable across time in group-1 horses (Table 3.3). In group-2 horses, significant 

decreases in dorsal, ventral, and overall colonic hemodynamic variables were observed 

across time (Table 3.4, Figs 3.3-3.5). Colonic seromuscular perfusion was significantly 

decreased across time (Table 3.5).

3 3 3  Nitric oxide analyses - There were no significant differences in colonic 

arterial or venous plasma NO concentrations across time for group-1 horses. However, 

significant decreases in colonic arterial and venous plasma NO concentrations were
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Table 3.1 - Systemic hemodynamic variables (mean ± SEM) before, during, and after
IV infusion of 0.9% NaCI.

Infusion Rate
(mg ATP/kg/min)t

Cl
(mmHg/ml/min)

SAP
(mmHg)

DAP
(mmHg)

MAP
(mmHg)

0.0 43.00tfc2.00 113.67±5.40 94.72±5.86 100.48±5.76

0.1 42.88±1.83 107.06±5.55 86.06±5.95 93.03±5.78

0.2 41.71±2.13 105.0d=b4.36 85.50±5.63 92.0l±5.16

0 3 43.20±2.44 111.67±4.02 91.50±5.16 98.22±4.74

0.4 40.59fcl.74 113.83±5.42 92.56±6.09 99.64±5.79

0.5 45.19±2.40 105.44±5.14 86.28fc5.56 92.68±5.36

0.6 43.56±2.52 110.33±6.00 87.72±6.23 95.24±6.14

0.7 42.00±1.96 111.72±5.13 88.11±5.50 95.97±5.37

0.8 44.7l±3.28 I15.94fc5.02 89.83±5.29 98.53±5.16

0.9 44.75±2.43 112.61±5.28 87.89±5.31 96.13±5.27

1.0

Time Post-infusion 
 (min)_____

43.29±3.08 112.44±4.92 86.94±5.31

113.50±5.29 89.61±5.23

95.44±5.15

97.57±5.23

112.61±5.30 88.78±5.55 96.72±5.45

112.67±5.37 87.72±5.50 96.06±5.45

45.47±2.06 109.78±538 86.89fc5.41 94.49±5.37

15 42.06±1.78 108.61fc5.05 86.28±4.99 93.73±4.98

30 44.60±2.7I 106.61±4.43 8I.72±4.45 90.01±4.4I

45 37.88±2.51 124.42±1.81 100.00fcl.55 108.13±1.60

60 4U9±5.00 126.83±1.57 104.17±1.18 U1.73±1.25

♦Significant (P s  0.05) difference from pre-infusion values. tEquivalent volume of 
0.9% NaCI over the same time period. Cl = cardiac index; SAP, DAP, MAP = systolic, 
diastolic, mean arterial pressure.
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Table 3.1 - continued

Infusion Rate
(mg ATP/kg/min)t

SPAP
(mmHg)

DPAP
(mmHg)

MPAP
(mmHg)

MRAP
(mmHg)

0.0 24.40±4.09 I1.97±l.l5 17.58±2.18 4.49t0.94

0.1 2i.38±2.91 13.15±2.05 16.68±237 2.99±1.08*

0.2 23.67±3.31 13.17±2.27 18.58±2.50 3.07±1.08*

0 J 27.35±2.86 16.20±3.3l 21.33±2.60 3.46±1.04

0.4 28.17±3.17 16.55±2.45 21.83±2.26 3.38±0.99

0.5 26.38^2.86 15.97±1.22 20.633k 1.20 3.71± 1.02

0.6 25.80±3.18 16.77±1.63 20.75±1.79 420±0.96

0.7 25.63±3.78 I3.23fcl.32 19.08fcl.88 4.01±0.88

0.8 28.47±3.69 14.28±2.24 20.93±1.53 3.66dtl .10

0.9 28.20±4.24 13.00±0.89 19.88fcl.55 4.56±0.87

1.0

Time Post-infusion 
 (min)_____

28.l0fc3.67 13.02±1.47 20.22±0.99 4.61±0.89

4.80±0.86

3.90±1.02

3.77±0.95

25.83±3.16 I3.20tfcl.46 18.93±1.39 3.87±0.84

15 26.57±2.06 16.03±1.89 20.60±l.l5 4.24±0.87

30 27.73±1.95 17.67±2.06 2232±1.46 4.59±0.93

45 30.33±3.84 15.67*5.24 22.67±2.60 4.53*1.23

60 29.58±236 15.90±4.15 22.83±2.46 3.42*1.09*

SPAP, DPAP, MPAP = systolic, diastolic, mean pulmonary arterial pressure; MRAP = 
mean right atrial pressure.
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Table 3.2 - Systemic hemodynamic variables (mean ± SEM) before, during, and after
IV infusion of ATP-MgCl2.

Infusion Rate
(mg ATP/kg/min)

Cl
(mmHg/ml/min)

SAP
(mmHg)

DAP
(mmHg)

MAP
(mmHg)

0.0 46.6l±l38 120.89±4.28 99.44±3.90 106.60±3.90

0.1 43.50±2.64 11739±2.88 95.78±2.78 102.99±2.63

0.2 39.78±2.25 H5.50±3.9l 86.78±2.48* 9634±2.74*

03 4l.89±2.30 103.22±5.07* 71.17±3.86* 81.85±4.08*

0.4 45.83±2.02 78.61±4.20* 47.6l±3.80* 57.94±3.87*

O S 48.28±4.49 72.44±4.81 * 43.83±4.24* 53.83±4.35*

0.6 52.06±3.6t 6639±5.43* 38.56±4.18* 47.65±4.55*

0.7 53.78±4.09 6l.22±5.40* 34.06±2.71* 43.12±3.54*

0.8 53.06±3.84 53.33±5.74* 30.72±2.90* 38.25±3.80*

0.9 44.61 ±232 48.72±5.79* 27.44±2.73* 34.48±3.72*

1.0

Time Post- 
infnsion (min)

44.28±2.6I 4l.56±5.65* 23.56±2.74*

74.94±9.23* 4339±5.83*

29.56±3.66*

53.91 ±6.89*

96.00±7.32* 6138±5.94* 72.86±6.26*

9620±8.26* 6230±6.95* 73.54±724*

49.40±3.0l 102.47±7.99* 65.80±6.11* 78.03±6.56*

15 46.73±1.80 98.93±6.33* 65.00±4.78* 7631±5.14*

30 46.93±130 10530±3.58* 7433±2.40* 84.62±2.65*

45 46.09±1.74 98.67±4.77* 70.50±2.91* 79.88±3.47*

60 43.90±0.97 99.08±1.88* 74.00±1.45* 8238±1.28*

See Table 3.1 legend for key.
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Table 3.2 - continued

Infusion Rate
(mg ATP/kg/min)

SPAP
(mmHg)

DPAP
(mmHg)

MPAP
(mmHg)

MRAP
(mmHg)

0.0 24.12±3.47 15.80tfc2.43 19.02±2.73 0.75±1.02

0.1 39.22±8.54* 2737±6.62* 33.70±8.10* 0.0t±1.03

02 35.48±4.15* 2033±0.97 2832±3.00* 0.55±0.88

0 J 3l.22±2.64 19.15±2.64 25.12±1.94 l.30±0.60

0.4 33.83±2.6l 20.40±2.77 26.15±1.87 0.94±0.8l

0.5 25.73±4.93 20.88^1.56 25.95±1.68 0.31±0.93

0.6 28.95±2.89 18.40^2.46 24.03±2.56 0.46±0.80

0.7 26.38±1.25 17.22±1.57 22.27±1.60 1.56±0.62

0.8 23.83±2.12 16.12±2.30 20.30±2.31 0.93±1.01

0.9 20.63^1.60 12.50±1.9l 17.82±2.I0 l.57±0.78

1.0 20.95±1.45 13.83fcl.49 18.20±1.81

Time Post-infusion 
(min)

1

I.33±0.96

0.26±1.07

-0.86±0.87*

-0.92±1.07*

22.34±1.87 16.72±2.16 19.26±1.73 -1.57±0.95*

15 2620±1.96 17.20±2.54 22.26fcl.89 -0.65±0.78

30 24.06±0.42 17.46±0.99 21.66fc0.80 -1.82±1.00*

45 24.33±233 14.67±1.45 22.00fc2.08 •0.18±0.60

60 28.00±4.04 17J3±2J3 22.67±2.60 -137±0.89*

See Table 3.1 legend for key.
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Figure 3 . 2  - Mean (± SEM) systemic arterial pressure (mmHg) and systemic vascular 
resistance (mmHg/L/min) before, during, and after IV infusion of ATP-MgCI, 
combination. * denotes significant (P £ 0.05) difference from pre-infusion values. Note 
the difference in the x-axis scale during and after the infusion.
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Table 33  - Colonic hemodynamic variables (mean ± SEM) before, during, and after IV
infusion of 0.9% NaCI.

Infusion Rate
(mg ATP/kg/min)t

DCAP
(mmHg)

VCAP
(mmHg)

DCVP
(mmHg)

VCVP
(mmHg)

0.0 77.00±6.79 92.67i3.13 9.59±1J2 8 .97 il.l4

0.1 69.89±6.58 8433i4.66 9.72il.l5 8.73±1.15

03 68.61±737 89.00i5.68 9.86±1.23 9 3 lil.17

03 70.94±533 87.56±4.40 9.09±1.07 8.18il.0l

0.4 75.39*6.53 88.06i3.92 9.49il.l7 8.67±1.13

03 74.00±6.55 89.50±5.32 9.85±1.21 9.12±1.09

0.6 73.22i7.05 8833±4.42 9.62±1.18 9.1 lil.04

0.7 71.67±731 91.11±3.59 9.81±1.13 9.18±1.13

0.8 72.94±6.82 89.06i4.20 9.13il.08

0.9 7l.61i730 90.83i4.41 9.95il.09 9.28il.I0

1.0 70.39i7.18 89.28i4.16 I0.32il.16

Time Post-infusion 
(min)______

75.93i5.70 90.93i5.62 10.67±1.16

931 il.l4

9.49±1.06

76.53i6.18 8930tk5.63 10.52±1.16 9.44±1.18

70.83i5.78 88.88±4.83 9.86il.20 933 il.l4

66.00i5.95 88.61i4.68 I0.0lit39 9.28il.20

15 66.72i5.01 8738i437 I0.I7iI35 9.46il.25

30 70.67i532 89.83i4.47 9.94il31 9.44il.l2

45 85.67i2.66 94.00il.99 I239il30 12.88i0.51

60 82.83i3.57 95.75i2.54 1235il.l9 11.83i0.85

^Significant (P £ 0.05) difference from pre-infusion values. tEquivalent volume of 
0.9% NaCI over the same time period. DCAP = dorsal colon arterial pressure; VCAP = 
ventral colon arterial pressure; DCVP = dorsal colon venous pressure; VCVP = ventral 
colon venous pressure
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Table 3 3  - continued

Infusion Rate
(mg

ATP/kg/min)t

DCF
(ml/min)

VCF
(ml/min)

DCR
(mmHg/ml/min)

VCR 
(mmHg/ml/min)

0.0 128.83±6.96 434.56±24.66 037±0.14 0.20±0.02

0.1 122.28±7.57 435.78±24.77 0.5l±0.11 0.18±0.03

03 122.11 ±6.23 419.83±24.09 0.52±0.13 0.20±0.03

03 124.94±8.00 395.83±24.17 0.52 ±0.09 0.22±0.03

0.4 123.6l±6.21 433.17±2034 0.55 ±0.11 0.19±0.02

03 113.28±2.00 416.11±18.23 0.56 ±0.09 0.20±0.03

0.6 114.33±4.10 402.17±12.08 0.54 ±0.08 0.20±0.02

0.7 112.72±3.68 43033±15.41 0.53 ±0.09 0.19±0.02

0.8 131.67±4.37 463.83±23.35 0.49 ±0.09 0.18±0.02

0.9 15028±13.92 437.17±23.14 0.44 ±0.10 0.20±0.03

1.0

Time Post- 
infusion (min)

I6039±14.01 46332±33.4I 038 ±0.08

148.94±15.06 439.67±23.98 0.48±0.06

0.19±0.03

030±0.04

162.89± 15.79 433.83±25.03 0.44±0.05 030±0.04

144.00±12.05 420.56±29.22 0.44±0.06 0.2I±0.04

15239±13.99 412.94±28.94 0.39 ±0.06 0.2I±0.04

15 140.00±11.19 437.61±26.10 0.42 ±0.06 0.19±0.03

30 135.89±1130 421.00±22.85 0.47 ±0.07 0.20±0.03

45 135.50±3.95 465.58±3136 0.55 ±0.06 0.18±0.02

60 141.83±6.76 478.75±29.63 0.51 ±0.07 0.18±0.01

DCF = dorsal colon blood flow; VCF = ventral colon blood flow; DCR = dorsal colon 
resistance; VCR = ventral colon resistance

V  T
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Table 3.4 - Colonic hemodynamic variables (mean * SEM) before, during, and after IV
infusion of ATP-MgCl2.

Infusion Rate
(mg ATP/kg/min)

DCAP
(mmHg)

VCAP
(mmHg)

DCVP
(mmHg)

VCVP
(mmHg)

0.0 88.28*2.64 88.56*2.44 9.38*0.93 10.41*1.12

0.1 84.67*2.33 85.72*2.06 8.14*0.95 8.91*1.19*

0.2 7933*2.50 79.33*2.70 8.43*1.01 9.20*1.25*

03 61.61*2.68* 64.83*2.56* 8.22*0.92 8.94*1.06*

0.4 42.78*2.19* 45.22*3.09* 7.87*0.77* 9.00*0.96*

03 40.94*3.93* 42.11*3.69* 8.74*0.72 9.66*0.95

0.6 36.11*4.36* 36.89*4.23* 9.42*0.84 9.80*1.05

0.7 35.11*3.72* 36.11*4.49* 8.64*0.81 9.54*0.98

0.8 29.00*2.98* 29.22*3.09* 7.51*0.76* 8.71*1.03*

0.9 2333*1.45* 26.22*2.64* 7.57*0.80* 8.36*0.95*

1.0 20.70*1.45* 22.28*2.59* 6.59*0.77*

Time Post-infosion 
 (min)______

40.78*531* 41.72*5.96* 836*0.97

7.54*0.91*

931*1.09*

57.94*5.87* 61.50*5.80* 7.91*0.85* 8.91*0.98*

63.27*6.90* 62.40*7.07* 8.39*1.15* 8.75*133

66.40*5.91* 66.33*6.70* 9.57*1.65 9.65*1.67

IS 63.93*4.44* 66.07*4.80* 7.77*1.10* 835*139*

30 70.27*237* 73.60*3.04* 836*138* 7.81*1.39*

45 69.17*2.49* 6833*3.51* 9.66*0.68 9.50*0.80*

60 69.08*1.18* 74.08*3.07* 10.67*1.00 10.13*1.10

See Table 3.3 legend for key.
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Table 3.4 - Continued

Infusion Rate
(mg

ATP/kg/min)

DCF
(ml/min)

VCF
(ml/min)

DCR
(mmHg/ml/min)

VCR 
(mmHg/ml/min)

0.0 129.67± 12.72 592.00±54.80 0.73±0.I5 0.16±0.03

0.1 139.28 ±14.45 571.67±52.29 0.69±0.16 0.16±0.03

0.2 133.56 ±13.46 514.39±46.27 0.64±0.I3 0.16±0.02

03 135.61 ±13.42 502.56±70.56 0.43 ±0.05* 0.14±0.02

0.4 115.67±6.86 460.72±41.70* 0.31 ±0.03* 0.09±0.01

0.5 121.33±10.96 431.06±42.24* 0.29 ±0.04* 0.09±0.02

0.6 120.06± 12.79 418.00±56.14* 0.23 ±0.04* 0.09±0.02

0.7 I29.72±12.07 411.94±59.14* 022 ±0.04* 0.10±0.03

0.8 105.33± 10.43 374.11±46.17* 022 ±0.03* 0.07±0.02*

0.9 93.78±12.16 358J9±46.17* 023 ±0.06* 0.06±0.01*

1.0 90.78±12.77* 316.61±41.54* 026 ±0.10*

Time Post­
infusion (min)

I33.61±19.65 393.33±34.81 * 028±0.04*

0.09±0.04

0.09±0.02

118.00±1123 418.56±39.90* 0.44±0.07* 0.13±0.02

132.47± 16.00 462.73±57.08* 0.45±0.09* 0.12±0.02

142.93±1339 523.20±55.05 0.42 ±0.07* 0.12±0.02

15 146.40±14.14 529.73±64.80 0.42 ±0.07* 0. 12±0.02

30 140.00±I2.15 512.07±5823 0.49 ±0.10 0.15±0.03

45 130.83±13.64 496.75±73.68 0.53 ±0.14 0.14±0.02

60 120.75±11.97 536.67±76.04 0.55 ±0.12 0.14±0.02

See Table 3.3 legend for key.
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Figure 33  - Mean (± SEM) overall colonic arterial pressure (mmHg) before, during, 
and after IV infusion of ATTP-MgClj combination. See Figure 3.2 legend for key.
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Table 3.5 - Colonic mucosal and seromuscular perfusion (meaniSEM) before, during, 
and after IV infusion of 0.9% NaCI (Group 1) or ATP-MgCl2 (Group 2).

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

| Group 1 Group 2

|  Infusion Rate 
1 (mg ATP/kgAnin)t

CMP (cpu) CSP (cpu) CMP (cpu) CSP (cpu)

0.0 14.65±1.61 17.69±238 20.51±236 25.03±4.09

0.1 I3.53±136 18.82±2.51 28.4l±3.19* 2136±2.35

02 12.06dfc0.97 18.45±2.00 25.49±330 2530±2.65

03 13.01±1.08 16.97±2.14 25.78±2.92 I7.72=kl.90’*

0.4 15.06±1.03 19.56±3.03 2438±335 13.98±0.86*

0.5 12.72±1.16 17.69±333 2036±3.00 16.23±2.57*

0.6 16.79±1.64 18.32dfc3.08 26.68±5.59 1234±1.31*

on 14.91±1.60 1635±3.01 22.57±4.86 12.17±1.78*

0.8 I636±137 19.19±3.49 18.01 ±2.46 I0.81=bl.59*

0.9 I4.69dfcl.93 20.04±3.60 21.04±4.83 9.68±133*

1.0 15.4l±l.99 16.73±3.42 18.32±4.08 9.37±1.13*

Time Post-infusion 
 (min)______

1 15.17±1.42 17.92±2.69 22.90±4.52 13.74±1.64*

16.56±1.65 18.18±3.04 20.62±2.90 16.52±2.49*

15.96±2.05 19.57±3.53 24.11±2.28 21.27±3.44

16.04±1.28 18.32±3.ll 20.74±2.26 15.60±2.44*

15 18.25±1.60 16.45±2.73 19.71±2.14 16.71± 1.69*

30 15.24±1.98 17.61±2.64 29.76±5.57* 14.69±1.37*

45 I7.82±l.l3 21.64±338 15.00±1.17 lt.35±2.07*

60 16.20±2.19 18.71±2.67 16.55±2.65 12.07±1.50*

Significant (P s 0.05) from preinfusion value

t  Equivalent volume of 0.9% NaCI over the same time period for Group 1. CMP = 
colonic mucosal perfusion; CSP -  colonic seromuscular perfusion.
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observed in group-2 horses at 45 and 60 minutes after discontinuation of the ATP- 

MgCl2 infusion.

33.4 ECG abnormalities - Six of the 12 horses developed cardiac arrhythmias 

during the study. Arrhythmias were detected in 1 group-1 horse and 5 group-2 horses. 

The group-l horse had atrial premature contractions (APC) prior to the start of the 

infusion, at the 0.2 and 1.0 mg/kg/min equivalent infusion rates and at 3 minutes post­

infusion.

Two group-2 horses developed periods of transient sinus arrest, which were 

detected in one horse prior to and one horse after the start of the infusion. A third horse 

had intermittent 2° atrioventricular (AV) block before and after the start of the infusion. 

A fourth horse had ventricular premature contractions (VPC) prior to the start of the 

infusion, during the 0.1 to 0.5 mg/kg/min infusion rates and from 0.9 mg/kg/min until 

the end of the study. At 2 minutes 45 seconds after discontinuation of the infusion, this 

animal developed ventricular fibrillation and died. The fifth horse had an undefined 

atrial arrhythmia before and after the start of the infusion.

3.4 Discussion

Intravenous infusion of ATP-MgCl2 in clinically normal, anesthetized adult 

horses caused a rate-dependent decrease in systemic and colonic vascular resistance, 

principally via its vasodilatory effects. In contrast to studies performed in other species, 

mild transient pulmonary hypertension developed in the group-2 horses during the 0.1 

and 0.2 mg/kg/min infusion rates. In a previous study, we determined the maximum 

safe intravenous infusion rate in conscious adult horses to be 0.3 mg ATP/kg/min (27). 

Administration of ATP-MgCl2 at 0.3 mg/kg/min in the present study caused a
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significant decrease in colonic arterial pressure and vascular resistance without a 

significant decrease in colonic arterial blood flow. However, at rates of 0.4 mg/kg/min 

or higher, blood flow to the colonic vasculature could not be maintained due to lack of 

driving pressure secondary to the marked decrease in MAP. Below a critical 

intravascular pressure, blood flow will not be maintained without increasing driving 

pressure. The mean MAP pressure during the 0.3 mg/kg/min infusion rate in the 

previous and present study was 121.9 and 81.85 mm of Hg, respectively (27). The 

systemic arterial pressure below which insufficient driving pressure is available to 

maintain blood flow to the splanchnic circulation is not known in horses. In clinical 

situations, systemic hypotension during general anesthesia is generally not treated until 

MAP reaches 60 mm of Hg or below. During the infusion rate at which a significant 

alteration in colonic arterial blood flow was observed (0.4 mg/kg/min), mean MAP was 

58 mm of Hg. The results of the present study suggest that an infusion rate of 0.3 mg 

ATP/kg/min may be beneficial to improve tissue perfusion to the ascending colon 

following an ischemic insult as long as driving pressure is maintained. However, the 

rate o f infusion of ATP-MgCU may need to be lowered in horses with hypotension 

secondary to hypovolemia or endotoxemia, which occurs commonly with intestinal 

ischemic diseases.

The systemic and colonic hemodynamic alterations observed in group-2 horses 

was directly related to administration of ATP-MgCl2. We did not observe significant 

differences in any measured or calculated variable between the two groups prior to the 

start of the infusion. Also, there were no consistent significant changes across time in 

the group-1 horses. Therefore, the hemodynamic alterations that were observed in the
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group-2 horses were due to the effects of the ATP-MgCl2 administration and not due to 

differences between groups, effect of anesthesia or effect of time.

The mechanism of ATP-MgCl2-induced vasodilatation has been investigated. In 

lambs, administration of N“-nitro-L-arginine (30) or methylene blue (31) (nitric oxide 

inhibitor or scavenger) inhibited vasodilatation, whereas indomethacin (prostacyclin 

inhibitor) and theophylline (32) (adenosine inhibitor) administration did not. Based on 

these findings, the authors concluded that ATP-MgCl2 exerts its vasodilatory effects 

through endothelial-derived NO rather than prostacyclin, adenosine or MgCl, (30,31).

Magnesium has been reported to be a potent vasodilating agent and has been 

demonstrated to potentiate vasodilatation when combined with ATP in vivo (19). 

However, we do not believe that magnesium was a major contributor to the 

vasodilatation response observed in the colonic vasculature in this study. In an in vitro 

pilot study, we have documented that addition of MgCl2 (10',2to lO^M) to ATP 

(equimolar concentrations) did not enhance the relaxation response of equine colonic 

arterial and venous rings (with intact and denuded endothelium) precontracted with 

endothelin-1, compared with ATP alone (unpublished data). Additionally, MgCl2 alone 

did not cause appreciable relaxation of colonic vascular rings (with intact and denuded 

endothelium) precontracted with endothelin-1. Based on this information, the systemic 

and colonic vasodilatory responses observed in this study were likely mediated through 

ATP directly and/or one of its metabolites. However, we do not know whether the in 

vivo and in vitro vascular response to magnesium are similar. Whether magnesium 

contributed to the vasodilatory response observed in the systemic circulation in this 

study is not known.
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The magnitude of the hemodynamic alterations produced by intravenous 

administration of ATP-MgCI2 are dependent on rate of administration, site of infusion, 

species being studied, whether the subjects are conscious or anesthetized and whether 

the subjects are clinically healthy or exhibiting signs of systemic disease. In contrast to 

our conscious horse study where we observed significant increases in CO, Cl, HR and 

PAP across time (27), the group-2 horses in this study did not follow a similar pattern. 

General anesthesia may override the presumed sympathetic stimulation that 

accompanies ATP-MgCl2 administration. In healthy, conscious men, rates of 0.1 to 0.4 

mg ATP/kg/min resulted in significant increases in CO and HR with no change in MAP 

(18). A study in healthy, conscious lambs receiving 3 rates of intravenous ATP-MgCl2 

(0.1,0.5, or 1.0 mg/kg/min) revealed no change in HR and MPAP but CO was increased 

during the highest rate and MAP was decreased at the 0.5 and 1.0 mg/kg/min rates (33). 

In healthy, anesthetized dogs, rates of 0.6-2.5 mg/kg/min increased CO and decreased 

MAP (21).

The anesthetized horses in the present study and the conscious horses in our 

previous study developed pulmonary hypertension, which is in contrast to a study in 

resting lambs documenting no change in pulmonary artery pressure with ATP-MgCl2 

administration (30). The reason for the pulmonary hypertension is not known, however, 

several possibilities exist. In order for the action of a vasodilating agent to be 

demonstrated, tissue vasoconstriction may have to occur (14). Results of in vitro 

studies have indicated that a variation in response to ATP administration can occur in 

different vascular beds and in vessels under different vascular tensions (14). In certain 

blood vessels, ATP can stimulate the smooth muscle directly (via P ^  receptors),
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causing vasoconstriction (34). In other vascular beds, ATP stimulates the endothelial 

P2Y receptor, causing vasodilatation (14). If ATP is metabolized to adenosine, 

activation of the A2 purinoreceptor can lead to vascular relaxation (16). Under resting 

tension, ATP induces vasoconstriction in some vascular beds; however, if tension is 

increased, vasodilatation occurs (14).

The data obtained from the laser Doppler flow probes located on the serosal and 

mucosal surfaces of the ascending colon revealed large variation in recorded values.

The most likely explanation for this variation is that the intestine is a continually motile 

organ. A disadvantage of the technique is its high sensitivity to motion-produced 

disturbances (35,36). If the laser beam is not directed perpendicular to the tissue, loss of 

intimate contact of the probe with the tissue occurs resulting in inaccurate values being 

recorded (35,36). Therefore, the method used in the present study to assess serosal and 

mucosal blood flow cannot currently be recommended. A superior method to assess 

blood flow distribution to the different layers of the intestinal tract would be to 

use either radiolabeled or colored microspheres (37,38).

As previously stated, the mechanism of ATP-induced vasodilatation in other 

species is through increased production of NO. We did not observe a significant 

increase in either colonic arterial or venous plasma NO concentrations in our group-2 

horses despite significant vasodilatation in the colonic vasculature. Potential reasons for 

the apparent lack of increase in NO production during ATP-MgCl2 administration 

include: lack of sensitivity of the assaying method; NO being released on the basalar 

rather than apical surface of the cell where it could escape more readily into the vascular 

lumen; ATP-induced vasodilatation occurs via a different mechanism in the horse; or
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vasodilatation is a result of the MgCl2 or breakdown products of ATP. Nitric oxide 

production can occur constitutively or inducibly (39). Adenosine triphosphate-induced 

vasodilatation occurs through induction of the constitutive form of NO synthase (cNOS) 

in the endothelium (13). Only picomole quantities of NO are released via cNOS, 

thereby making small changes in concentrations of NO difficult to detect. The 

mechanism of action of ATP-induced vasodilatation in isolated equine colonic vascular 

rings is currently being investigated by our laboratory. The reason for the decrease in 

NO concentrations observed in the group-2 horses after discontinuation of the infusion 

is not known but may be due to cessation of stimulation of cNOS.

Short-term control of arterial blood pressure homeostasis is mediated primarily 

by the baroreceptor reflex (40,41). Acute decreases (increases) in arterial pressure are 

detected by the arterial baroreceptors and result in reflex increases (decreases) in heart 

rate (40,41). In the present study, there was failure of the arterial baroreceptor reflex to 

respond to ATP-MgCU-induced hypotension. Baroreflex sensitivity is depressed by IV 

and inhalation-administered anesthetics in numerous species (42-45). Although IV- 

administered anesthetic-induced depression of the baroreflex has been shown to be less 

than inhalants (46,47), there was failure of the baroreflex to correct the profound 

decrease in systemic arterial pressure that occurred in the horses in this study.

Cardiac arrhythmias were observed in 6 of 12 horses in this study. The majority 

(5 of 6) of arrhythmias occurred in horses administered ATP-MgCl2. However, 4 of 5 

horses that received ATP-MgCl2 had evidence of cardiac arrhythmias prior to the start 

o f the infusion. The exact etiology of the arrhythmias in the horses is not known but 

may be associated with administration of preanesthetic and anesthetic agents and/or
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cardiac catheterization. In humans, cardiac catheterization has a reported complication 

rate of approximately 23% (48). In our previous study, 3 of 6 conscious horses 

receiving ATP-MgCl2 had cardiac arrhythmias; all o f which were present prior to the 

start of the infusion (27). In those horses, the arrhythmias were suspected to be 

associated with the cardiac catheters.

The most common cardiac disturbance detected in this group involved slowing 

of conduction through the heart Administration of ATP-MgCl2 should be used with 

caution in horses with pre-existing AV conduction disturbances because both ATP and 

adenosine are biological compounds with potent depressant activity on the 

atrioventricular (AV) node (49-51). Because of this effect, ATP has been used to treat 

supraventricular arrhythmias (52). The anti arrhythmic effects of ATP are produced by 

blocking the reentry circuit in the AV node (53). Atrioventricular conduction 

disturbances (1°, 2°, 3° AV block) have been observed during continuous IV infusion of 

ATP (50). In contrast, ATP has been documented to exert an excitatory effect on 

intraventricular automaticity (49).

Arrhythmias may be associated with reperfusion of ischemic myocardium and 

this may be a major progenitor for sudden cardiac death in people (54). The 

electrophysiological basis for arrhythmias associated with reperfusion appears to be 

heterogenous electrical recovery, but the precise alterations responsible for malignant 

versus nonmalignant arrhythmias are unknown (54). The cause of ventricular fibrillation 

and death in one horse in the current study is not known, but we speculate was attributed 

to a reperfusion phenomenon of the hypoxic myocardium secondary to the profound 

systemic hypotension (22.9 mm of Hg MAP during maximal infusion rate) that occurred
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during the higher infusion rates. This horse had evidence of premature ventriuclar 

contractions prior to the start of the infusion, which can be indicative of pre-existing 

myocardial disease or electrolyte imbalances (55). Electrolyte abnormalities were not 

detected. Therefore, pre-existing myocardial disease which was exacerbated by 

profound hypotension and secondary hypoxia may have been the cause of ventricular 

fibrillation in this horse. Because of the potential for atrioventricular conduction 

disturbances and the increased potential for arrhythmias to develop secondary to 

systemic hypotension and myocardial ischemia, heart rate and rhythm should be 

monitored in horses, especially critically-ill horses, receiving an IV infusion of ATP- 

MgCl2.

In conclusion, IV administration o f ATP-MgCl2 to clinically healthy, 

anesthetized horses caused a rate-dependent decrease in systemic and colonic vascular 

resistance. Further studies are required to determine the efficacy of ATP-MgCl2 in the 

treatment of intestinal ischemia in horses. The reduction in blood flow and decreased 

mucosal ATP content that persists following correction of experimentally-induced 

ascending colon ischemia may be attenuated with administration of ATP-MgCl2 by 

improving blood flow and supplying substrate (ATP) and cofactor (Mg) to the highly 

metabolically-active mucosal layer.

3.5 Product Information

“Rompun, Mobay Corp, Animal Health Division, Shawnee, Kan.

bTorbugesic, Fort Dodge Animal Health, Fort Dodge, Iowa.

cAngiocath 382269, Becton Dickson Infusion Therapy Systems Inc, Sandy, Utah.

dPentalumen thermodilution catheter 41216-01, Abbott Critical Care Systems, Abbott 
Laboratories, Hospital Products Division, North Chicago, 111.
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Tntramedic polyethylene tubing model PE260, Becton Dickson, Sparks, Md.

‘Normosol, Abbott Laboratories, North Chicago, 111.

‘Injector 500, Columbus Instruments, Columbus, Ohio.

hCardio Max II model 85 thermodilution cardiac output computer, Columbus 
Instruments, Columbus, Ohio.

'Intramedic polyethylene tubing model PE205, Becton Dickson, Sparks, Md.

'Guaifenesin 0190-8, Puger Chemical Company Inc, Irvington, NJ.

kPentothal 8912, Abbott Laboratories, North Chicago, 111.

'Sodium pentobarbital injection, The Butler Company, Columbus, Ohio.

"Anesthesia Ventilator model NELAC-E, North American Drager, Telford, Pa.

"Quick-Cath 2N-11-13, Baxter Healthcare Corporation, Deerfield, HI.

°Quik-Cath 2N-11-10, Baxter Healthcare Corporation, Deerfield, 111.

pAdenosine 5'-triphosphate disodium salt A3377 and magnesium chloride hexahydrate 
M2670, Sigma-Aldrich Inc, St Louis, Mo.

qK module model K-20, Baxter Healthcare Corporation, Pharmaseal Division, Valencia, 
Ca.

Trobe #3S1174 model T206, Transonic Systems Inc, Ithaca, NY.

*Probe #HLR1143 model BLF-21D, Transonic Systems Inc, Ithaca, NY.

'Probe #HLN1110 model BLF-21D, Transonic Systems Inc, Ithaca, NY.

“Polygraph model 7D, Grass Instruments, Quincy, Mass. 

vChart recorder model 25-60, Grass Instruments, Quincy, Mass. 

wLife care pump model 4, Abbott Laboratories, North Chicago, 111. 

xModel 280 (NOA), Sievers Instruments Inc, Boulder, Colo. 

yProc mixed SAS version 6.12, SAS Institute, Cary, NC.
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CHAPTER 4. EFFECTS OF ATP-MgCl2 COMBINATION ON 
CLINICAL SIGNS, HEMODYNAMIC, METABOLIC, 
HEMATOLOGIC, AND SERUM BIOCHEMICAL VARIABLES 
IN CLINICALLY, HEALTHY, CONSCIOUS HORSES 
ADMINISTERED LOW-DOSE ENDOTOXIN
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4.1 Introduction

Endotoxemia remains the leading cause of death in horses (1,2). Endotoxemia 

affects all horses regardless of age, breed, gender, or geographic location. The 

prevalence of endotoxemia in horses with acute gastrointestinal tract disease (colic) 

admitted to referral veterinary hospitals has been estimated to be approximately 25%, 

and it represents a major cause o f mortality in horses with colic (1,3,4). The most 

common gastrointestinal tract diseases associated with endotoxemia include 

enterocolitis/enteritis and intestinal strangulation obstruction, and are often associated 

with complications such as laminitis and gastrointestinal ileus (5).

There are several inherent mechanisms that restrict transmural movement of 

endotoxins and bacteria from the gastrointestinal tract lumen, including epithelial cells 

and intercellular tight junctions, cellular secretions, and lamina propria (2). Disruption 

of the intestinal mucosal barrier allows transmural passage of endotoxin into the 

systemic circulation. If sufficient endotoxin enters the portal circulation, the ability of 

the liver to remove it may be overwhelmed, resulting in systemic endotoxemia (6). In 

comparison with other species, horses are exquisitely sensitive to the effects of 

endotoxin (7).

Experimental models o f endotoxemia produce clinicopathologic alterations that 

parallel the changes that occur during the naturally acquired disease (7-9). In an 

experimental study utilizing an intravenous endotoxin dose of 35 ng/kg, a marked, acute 

inflammatory response was observed (9). Increases in serum inflammatory cytokines 

were noted, as well as alterations in clinical signs and hematologic variables, and these 

changes mimicked the naturally acquired disease (9).
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Studies evaluating the efficacy of ATP-MgCl2 combination suggest it has 

potential beneficial effects in patients with hypoperfusion (low-flow) or organ ischemia. 

The use o f ATP-MgCl2 following hemorrhagic shock and other adverse circulatory 

conditions in both humans and laboratory animals has been shown to improve 

mitochondrial function and tissue ATP content (10,11); restore organ function, blood 

flow, and perfusion (11-14); improve reticuloendothelial function, survival time, and 

survival rate (15,16); and down-regulate the synthesis and release of inflammatory 

cytokines (TNF and EL-6) (17).

In our laboratory, IV administration of ATP-MgCl2 to clinically healthy, 

conscious horses was associated with a rate-dependent increase in cardiac output, 

decrease in systemic vascular resistance and mild pulmonary hypertension without any 

appreciable detrimental effects (18). In a second study, IV infusion of ATP-MgCL at an 

infusion rate of 0.3 mg of ATP/kg of body weight/min to clinically healthy, anesthetized 

horses, caused a significant decrease in colonic vascular resistance without a 

corresponding decrease in colonic arterial blood flow (19). These results suggest that IV 

infusion of ATP-MgCl2 could have beneficial effects during low-flow conditions by 

improving tissue perfusion and providing an energy substrate (ATP) directly to ischemic 

tissues for maintenance of cellular metabolism.

Administration of ATP-MgCl2, which has vasodilatory actions, increases cardiac 

output and delivers an energy substrate directly to the tissues, offers a potential therapy 

for horses with gastrointestinal tract ischemia and endotoxic shock. We hypothesized 

that IV infusion of ATP-MgC^ would significantly attenuate the pathophysiologic 

alterations in clinical signs and cardiopulmonary, metabolic, hematologic, and serum
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biochemical variables subsequent to low-dose endotoxin infusion in clinically normal, 

conscious adult horses. The purpose of the study reported here was to evaluate the 

effects o f IV ATP-MgCl2 on hemodynamic, hematologic, and metabolic alterations 

during low-dose endotoxin infusion in horses.

42 Materials and Methods

42.1 Horses - The study was approved by the Institutional Animal Care and Use 

Committee of Louisiana State University. Twelve clinically normal horses (8 

Thoroughbreds and 4 Quarter Horses; 8 castrated males and 4 females), ranging in age 

from 6 to 15 (median, 13) years old and weighing 465.9 to 604.5 kg (median, 505.7 kg) 

were studied. Horses were maintained on a routine preventive health care program. 

Horses were housed in a box stall and acclimated to the study area (1.82 X 1.82 m) for a 

minimum of 10 days prior to the start of the study.

4.2.2 Instrumentation - Horses were instrumented, using described techniques 

(18). All catheters were placed percutaneously after aseptic preparation of the skin and 

SC infiltration of lidocaine. A 14-gauge, 5.1-cm Teflon-coated catheter* was inserted 

into the left jugular vein for infusion of the pretreatment (LPS or 0.9 % NaCl) and the 

treatment (0.9% NaCl or ATP-MgCy solutions. Polyethylene tubingb (outside diameter 

[OD], 1.57 mm) was inserted distal to the first catheter and advanced until the tip was 

positioned in the right atrium for determination of mean right atrial pressure (MRAP). A 

balloon-tipped, flow-directed thermodilution catheter,0 which was used for measurement 

of cardiac output (CO) and pulmonary artery pressures (PAP), was inserted distal to the 

first two catheters and advanced until the distal port was positioned in the pulmonary 

artery. A 14-gauge, 13.3-cm Teflon-coated catheter* was inserted into the right jugular

147

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

vein for collection of jugular venous blood. Polyethylene tubing* (OD, 1.77 mm) was 

inserted distal to first catheter and advanced until the tip was positioned in the right 

ventricle for infusion of ice-cold polyionic fluidsf for measurement of CO. A 55-ml 

volume of fluid was infused over 4 seconds into the right ventricle, using a carbon 

dioxide-driven injector,8 and the CO was derived on the basis of thermodilution (18). A 

second polyethylene tubing (OD, 1.77 mm) was placed distal to the first and advanced 

until the tip was positioned in the pulmonary artery for collection of pulmonary artery 

blood. Arterial blood pressures were measured by use of a 20-gauge, 4.45-cm 

Polyurethane-coated catheter1* placed in the transverse facial artery. All catheter 

positions were confirmed by presence of characteristic pressure wave forms. All 

pressure transducers' were positioned at the point of the shoulder. The pressure 

transducers and CO meter* were connected to a polygraph1* and pressure and CO curves 

recorded on a chart recorder1. A continuous base-apex ECG also was obtained.

4.2 J  Experimental design - During the study, horses were cross-tied and hay 

and water were provided ad libitum. Twelve horses were used in a nested factorial 

design. Horses were pre-treated with either E. coli 055:B5 endotoxin” at 35 ng/kg or an 

equivalent volume of 0.9% NaCl solution via an infusion pump" over a 30-minute 

period. The pre-treatments were randomly assigned. Horses in each pre-treatment 

group were randomly assigned to one of two treatment groups: 0.9% NaCl or ATP- 

MgCl2°. Immediately upon completion of the pre-treatment infusion (endotoxin or 0.9% 

NaCl), horses were administered their assigned treatment (100 /Anole ATP/kg and 100 

/Umole MgCl2/kg at an infusion rate of 0.3 mg of ATP/kg of body weight/min or an 

equivalent volume of 0.9% NaCl solution over the same period). The formulation of
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ATP-MgCl2 has been described (18,20). Two weeks later, horses were pre-treated with 

the opposite solution (endotoxin or 0.9% NaCl) but received the same treatment (ATP- 

MgCl2 or 0.9% NaCl). The 4 groups were designated: S/S (0.9% NaCl/0.9% NaCl); L/S 

(LPS/0.9% NaCl); S/A (0.9% NaCl/ATP-MgClj); and L/A (LPS/ATP-MgClJ. Clinical 

signs and hemodynamic variables were determined at baseline (BL - prior to the start of 

the pre-treatment), post-infusion (PI - end of the pre-treatment infusion), 0.05 (5 

minutes after starting the treatment infusion) and at 30-minute intervals for 6 hours (hrs) 

after starting the treatment infusion. Arterial blood gas analyses were determined at BL, 

PI, 0 .5 ,1 ,1 .5 ,2 ,4 ,6 ,8 , and 12 hrs. Complete blood counts were determined at BL,

0 .5 ,1 ,1 .5 ,2 ,4 , 8,12,18, and 24 hrs. Serum biochemical profile data were determined 

at BL, 2 ,6 ,12,18, and 24 hrs. All horses were un-instrumented at 6 hrs, with the 

exception of the transverse facial and pulmonary artery catheters, which were removed 

at 12 hrs, and one jugular venous catheter, which was removed at 24 hrs.

4.2.4 Clinical signs of disease - Heart rate (beats/min), respiratory rate 

(breaths/min), rectal temperature (°C), mucous membrane color, capillary refill time 

(CRT; seconds), and behavior were monitored.

4.2.5 Hemodynamic variables - Hemodynamic variables that were measured 

included heart rate (beats/min), systolic, diastolic, and mean systemic and pulmonary 

arterial pressures (SAP, DAP, MAP and SPAP, DPAP, MPAP, respectively; mm Hg), 

MRAP (mm Hg), and CO (L/min). Three measurements were taken at each time for 

each pressure variable. Five measurements were taken for CO at each time, and the 3 

middle values were used in the analyses. Cardiac index (Cl; CO kg of body weight; 

ml/min/kg), systemic vascular resistance (SR^ [MAP-MRAP] * CO; mm Hg/L/min),
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and pulmonary vascular resistance (PR^ MPAP * CO; mm Hg/L/min) were calculated 

(21). Specific ECG alterations were recorded.

4.2.6 Metabolic variables - Heparinized facial arterial blood samples (2 ml 

each) were collected anaerobically and stored on ice until analyzed11 for pH, partial 

pressure of carbon dioxide (PaC02; mm Hg), partial pressure of oxygen (Pa02; mm Hg), 

percentage oxygen saturation (Sa02; %), bicarbonate concentration (HC03‘; mEq/L), 

total C 02 (TC02; mmol/L), and base excess. All samples were analyzed within 10 

minutes of collection. Systemic arterial oxygen content (Ca02; ml/dl) was calculated as 

the sum of oxygen bound to hemoglobin (Hb) and oxygen dissolved in plasma ([Hb x 

%Sa02 x 1.34] + [Pao2 x 0.003]) (18). Oxygen delivery (Do2; ml/min) was estimated as 

the product of Cao2 and CO (DOj = Ca02 x CO) (18).

4.2.7 Hematologic variables - Jugular venous blood (3 ml) was collected into 

tubes containing EDTA. The samples were analyzed for PCV (%), total solids 

concentration (g/dl), complete blood countq and white blood cell differential, and 

fibrinogen concentration (mg/dl).

4.2.8 Serum biochemical variables - Jugular venous blood (6 ml) was collected 

into tubes containing lithium heparin and analyzed' for plasma glucose (mg/dl), 

aspartate transaminase (AST; U/L), y-glutamyltransferase (GGT; U/L), alkaline 

phosphatase (ALP; U/L),creatine kinase (CK; U/L), total bilirubin (mg/dl), albumin 

(g/dl), globulin (g/dl), BUN (mg/dl), creatinine (mg/dl), calcium (mg/dl), phosphorus 

(mg/dl), sodium (mmol/L), potassium (mmol/L), chloride (mmol/L), anion gap 

(mmol/L), and magnesium (mg/dl).
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4.2.9 Statistical analyses - The study was considered a mixed effect, nested 

factorial design, with horses nested within treatments. Data were considered continuous 

and followed a normal distribution based on the Shapiro-Wilk statistic with failure to 

reject the null hypothesis of normality at p<0.05. Non-normal data was transformed. 

The data were summarized and graphed as mean ± SEM.

Data were analyzed using a mixed effect general linear model, which accounted 

for the random effect of horse nested within treatments, and repeated measurements on 

each horse. Interaction effects were included. Where there were significant effects of 

time and interactions of treatment, toxin and time at P<0.05, pre-determined multiple 

comparisons were made, using adjusted least squares means maintaining an experiment- 

wise error of a  = 0.05. Within group comparisons were made to each groups 

corresponding BL values to describe behavioral changes over time. Treatments that 

behaved differently over time were implied to be different Since S/S and S/A groups 

functioned as control groups, between group comparisons were made for L/S and L/A 

groups only when both changed similarly over time from their corresponding BL value. 

SAS version 8.0 (PROC MIXED, PROC UNIVARIATE)* was used for all analyses.

4 J  Results

43.1 Clinical signs of disease - Heart rate was significantly increased in S/A 

and L/A horses (Fig. 4.1). Respiratory rate was significantly increased in S/A and L/A 

horses (Table 4.1). Rectal temperature was significantly increased in S/A, L/S and L/A 

horses (Table 4.1). No significant differences in rectal temperature were observed 

between L/S and L/A horses. There were no consistent changes in mucous membrane
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Figure 4.1 - Mean (±SEM) heart rate and cardiac index in horses pretreated with either 
endotoxin (35 ng/kg over 30 minutes) or an equivalent volume of 0.9% NaCl 
immediately followed by treatment with either ATP-MgCl2 (100 (imole/kg ATP and 
100 |lmoIe/kg MgCl2 at an infusion rate of 0.3 mg ATP/kg/min) or an equivalent 
volume of 0.9% NaCl. *denotes significant (p £ 0.05) differences from baseline values. 
Treatment groups that behaved differently over time were implied to be different. 
Between group comparisons were only made for the LPS/ATP-MgCl2 and LPS/0.9% 
NaCl groups when both changed similarly over time from their corresponding baseline 
value. Different letters (a,b) indicate significant differences (p £ 0.05) between L/A and 
L/S groups.
Key - BL = baseline; PI = end of the pre-treatment infusion; 5m Post = 5 min after 
discontinuation of the treatment infusion.
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Table 4.1 - Mean (±SEM) respiratory rate and rectal temperature in horses pretreated 
with either endotoxin (35 ng/kg over 30 minutes) or an equivalent volume of 0.9% NaCl 
immediately followed by treatment with either ATP-MgCl2 (100 |imole/kg ATP and 
100 flmole/kg MgCl2 at an infusion rate of 0.3 mg ATP/kg/min) or an equivalent 
volume of 0.9% NaCl. ^denotes significant (p £ 0.05) differences from baseline values. 
Key - BL = baseline; PI = end of the pre-treatment infusion; 5m Post = 5 min after 
discontinuation of the treatment infusion.

R espiratory R ate (breaths/m in) R ectal T em perature (°Q

Tim e (hrs) L/A S/A L/S S/S L/A S/A L/S S/S

BL 13.33 16.00 1933 19.33 37.75 37.88 37.67 37.93

PI 13.33 16.00 18.00 18.67 37.92 37.78 37.78 37.97

.05 37.33* 27.33* 18.67 1533 37.93 37.88 37.83 37.88

J 30.67* 21.33 18.40 17.33 38.15 37.93 37.95 37.95

1 24.00* 20.00 20.00 16.67 3837* 38.10 38.15* 38.05

1.5 22.67* 20.67 16.67 16.00 38.58* 3828 38.53* 38.07

2 22.00 24.00 16.00 16.80 39.13* 38.33 39.00* 3825

2.5 2133 2133 18.00 17.33 3920* 3828 38.93* 38.35

3 2333* 2133 24.00 1733 3930* 3835 39.12* 3825

5m Post 26.00* 16.00 2333 1733 39.08* 38.38* 38.95* 3827

3.5 25.33* 16.00 2533 18.00 39.07* 38.32 38.90* 38.32

4 27.67* 16.67 22.00 18.00 38.85* 3822 38.78* 3828

4.5 24.67* 18.00 2333 1733 38.93* 38.43* 38.60* 3823

5 24.67* 14.67 1933 1933 38.63* 38.43* 38.55* 38.12

5.5 22.67* 16.00 20.00 16.00 38.65* 3837* 38.48* 38.12

6 22.67* 1733 20.00 16.67 38.75* 38.47* 3820* 38.12

8 1933 20.00 18.00 18.00 38.68* 38.43* 38.33* 3828

10 18.67 20.67 14.67 17.33 38.55* 38.18 38.18* 38.12

12 16.67 16.67 16.00 16.00 38.37* 38.15 38.07 38.03

18 18.67 1933 20.00 18.67 37.70 37.83 37.78 37.98

24 19.00 19.67 2333 18.00 37.57 37.75 37.85 37.82
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color and CRT across time for any group. The majority of L/S and L/A horses exhibited 

signs of transient abdominal pain with subsequent anorexia and depression after 

endotoxin administration. The behavioral alterations persisted for approximately 2 hrs.

43.2 Hemodynamic variables - CO was significantly increased in S/A and L/A 

horses from 0.05 to 3 and 1 to 3 hrs, respectively, and decreased in S/A horses at S hrs. 

There was a significant increase in L/S horses only at I hr. Cl followed a similar pattern 

as CO (Fig. 4.1) MAP significantly increased in L/S and L/A horses and decreased in 

S/A horses (Fig. 4.2). Systolic and diastolic systemic arterial pressures followed a 

pattern similar to that of MAP. There was a significant transient increase followed by a 

decrease in SRL during the ATP-MgCl2 infusion in L/A horses. Upon discontinuation of 

the infusion, SRL transiently increased (Fig 4.2). In S/A horses, SRL significantly 

decreased during the ATP-MgCl, infusion (Fig. 4.2). In L/S horses, there was a 

significant transient increase in SRL (Fig. 4.2). In L/S, L/A and S/A horses, MPAP 

significantly increased (Fig. 4.3). Systolic and diastolic pulmonary arterial pressures 

followed a pattern similar to MPAP. There was a significant transient increase in PRL in 

the L/A, L/S and S/A groups (Fig. 4.3). In L/A and S/A horses, PRL significantly 

decreased toward the end of the infusion (Fig. 4.3). There was a significant transient 

increase in MRAP at 0.05 in both the L/S and L/A groups. Comparisons between L/S 

and L/A from MRAP could not be performed, because the groups were not equal at BL. 

In L/A and S/A groups, MRAP was significantly decreased at 0.5 to 2.5 hrs, 5 min post­

infusion and 5 to 5.5 hrs and 0.5 hr to 5 min post-infusion, respectively.

4.33 Metabolic variables - Arterial pH was significantly increased in L/S 

horses from PI to 8 hrs, except at 6 hrs. A significant decrease across time for PCO2  was
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Figure 4.2 - Mean (±SEM) mean arterial pressure and systemic vascular resistance in 
horses pretreated with either endotoxin (35 ng/kg over 30 minutes) or an equivalent 
volume o f 0.9% NaCl immediately followed by treatment with either ATP-MgCl, (100 
|!mole/kg ATP and 100 (imole/kg MgCl2 at an infusion rate of 0.3 mg ATP/kg/min) or 
an equivalent volume of 0.9% NaCl. See Figure 4.1 legend for key.
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Figure 4.3 - Mean (±SEM) mean pulmonary artery pressure and pulmonary vascular 
resistance in horses pretreated with either endotoxin (35 ng/kg over 30 minutes) or an 
equivalent volume of 0.9% NaCl immediately followed by treatment with either ATP- 
MgCl2 (100 |imole/kg ATP and 100 (imole/kg MgCl2 at an infusion rate of 0.3 mg 
ATP/kg/min) or an equivalent volume of 0.9% NaCl. See Figure 4.1 legend for key.
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observed in the L/A, L/S and S/S groups. In L/A horses, PO2  was significantly 

decreased from O.S to 2 hrs. Bicarbonate concentrations and base excess were 

significantly decreased across time in all groups. TC02 was significantly decreased in 

17A, L/S, and S/S groups across time. The %Sao2 was significantly decreased in L/A 

horses from 0.5 to 2 hrs. There was a significant increase in Cao2 in L/A and S/A 

horses at 0.5 and 2 to 6 hrs and at 0.5 to 4 hrs, respectively. Do, significantly increased 

in L/A and S/A horses from 1 to 2 hrs and 0.5 to 2 hrs, respectively.

43.4 Hematologic variables - Red blood cell count was significantly 

increased in L/A, S/A, and S/S horses at 0.5,2 to 8, and 18 hrs, 0.5 to 4 hrs, and 18 to 

24 hrs, respectively. Hemoglobin was significantly increased in L/A and S/a horses at

0.5,4 to 8, and 18 hrs and I to 2 hrs, respectively. Platelets were significantly decreased 

in the L/A group at 0.5 to 2 and 12 to 24 hrs. There were significant, transient, 

inconsistent decreases in platelets in the other 3 groups. Fibrinogen concentration was 

significantly decreased in L/A horses at 4 hrs. White blood cell count was significantly 

decreased and then increased in L/A, L/S, and S/A horses (Fig. 4.4). Percentage 

neutrophils were significantly decreased in L/A from 0.5 to 2 hrs and then increased in 

L/A, L/S, and S/A beginning at 4 hrs (Fig. 4.4). Percentage band neutrophils were 

significantly increased in L/A at 4 hrs. Percentage lymphocytes were significantly 

decreased across time in L/A, L/S, and S/A horses. Percentage monocytes were 

significantly increased in L/S and S/S groups at 6 hrs and at 8 and 12 hrs, respectively. 

There were no changes in percentage basophils across time for any group. Percentage 

eosinophils were significantly decreased in L/A and L/S groups at 0.5 to 24 hrs and 6 

hrs, respectively.
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Figure 4.4 - Mean (±SEM) white blood cell count and neutrophils in horses pretreated 
with either endotoxin (35 ng/kg over 30 minutes) or an equivalent volume of 0.9% NaCl 
immediately followed by treatment with either ATP-MgCl2 (100 p.mole/kg ATP and 
100 |imole/kg MgCl2 at an infusion rate of 0.3 mg ATP/kg/min) or an equivalent 
volume of 0.9% NaCl. See Figure 4.1 legend for key.
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4 3 3  Seram biochemical variables - There were no consistently significant 

changes across time for glucose, AST, and sodium. Numerous mild changes were 

observed across time in all groups for the remaining serum biochemical variables (Table 

4.2).

4.4 Discussion

Intravenous ATP-MgCl2 after low-dose endotoxin administration to clinically 

healthy, conscious, adult horses failed to attenuate the clinical, hemodynamic, metabolic 

and hematologic alterations that occur secondary to endotoxin exposure (9,22). The 

combination of endotoxin and ATP-MgCl, appeared to potentiate the pulmonary 

hypertension, leukopenia, and neutropenia that occurred when endotoxin was given 

alone. Finally, endotoxin and ATP-MgCl2 combination led to thrombocytopenia.

Pulmonary hypertension has been documented to occur in horses given 

endotoxin (9,23) or ATP-MgCl2 (18,19). The pulmonary hypertensive effects of ATP- 

MgCl2 and endotoxin in the present study appeared to be additive. However, the 

pulmonary hypertension and secondary hypoxemia in the L/A group was transient. 

Furthermore, oxygen delivery was increased in this group owing to an increase in CO. 

Therefore, the pulmonary hypertension and hypoxemia observed in the L/A horses may 

not be clinically significant since oxygen delivery was increased.

The development of pulmonary hypertension secondary to ATP-MgCl2 

administration appears to be unique in horses. Pulmonary hypertension secondary to 

cardiac abnormalities in children (24) or in piglets secondary to sepsis (25) can be 

successfully reversed with administration of ATP-MgCl2. Attenuation of pulmonary 

hypertension secondary to endotoxin administration was not observed in the present
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Table 42 - Mean (±SEM) serum biochemical variables in horses pretreated with either 
endotoxin (35 ng/kg over 30 minutes) or an equivalent volume o f 0.9% NaCl 
immediately followed by treatment with either ATP-MgCl2 (100 |imole/kg ATP and 
100 llmole/kg MgCl2 at an infusion rate of 0.3 mg ATP/kg/min) or an equivalent 
volume of 0.9% NaCl. ^denotes significant difference (p £ 0.05) from baseline value. 
Key - L/A = LPS/ATP-MgCl2; S/A = 0.9% NaCl/ ATP-MgCl2; L/S = LPS/0.9% NaCl; 
S/S = 0.9% NaCl/0.9% NaCl.

Tim e (hours)

V ariable G roup 0 2 6 12 18 24

Glucose
(m g/dl)

L/A 101.5*6.9 97.7*5.2 109.7*3.8 110*3.4 106.7*31 104.8*3.1

S/A 101*4.5 89.2*5.2 100.5*4.7 100*3.8 101.2*1.3 99.7*3.2

U S 96.8*2.5 91.7*4.6 106.5*4.0 101.5*3.8 97.5*23 104.7*38

S/S 95.17*12 1203*6.8* 95.2*18 100*2.5 96.3*1.9 107.7*5.0

AST (U/L)

UA 342*30.7 355.5*30.7 361*41.0 3493*36.1 331.7*323 322.7*34.6

S/A 277.5*25.8 3053*263* 2973*31.9 303.3*30.0 288.17*27.0 287.7*25.9

US 235.2*29.6 233.5*25.6 230*27.6 246.8*31.0 236.67*29.5 234.8*27.1

S/S 217.5*16.7 222*18.6 223.8*21.0 235.7*18.9 230.7*18.5 223.7*18.7

GGT (U/L)

UA 10.83*0.7 23*4.7* 193*4.0* 19.7*5.6* 183*43* 18*43*

S/A 15*16 16.3*15 15.3*13 15.2*2.2 15.2*1.9 14.3*1.9

US 16.5*5.3 16.7*5.5 173*5.4 17.3*5.8 18.5*5.8 17.5*5.7

S/S 19.5*7.72 19.83*7.71 19.17*7.98 20.5*8.11 21*8.02 19.5*7.5

Aik. Phos. 
(U/L)

UA 160.5*9.1 4703*753* 3163*43.6* 235.7*113* 219*10.9 208*11.5

S/A 150.7*133 223*44.7* 1813*20.4 170.5*20.4 161.3*17.3 161.8*15.7

US 144*10.1 1618*11.7 169*11.1 170*11.4 166.3*10.4 166.3*10.4

S/S 147.7*13.7 1513*110 1483*11.1 161.5*11.1 1603*9.9 1563*8.8

CK (U /L)

UA 253.3*26.9 2793*31.8 297.7*34.6* 2763*37.5 2338*31.5 222.8*35.9

S/A 233.7*37.5 2753*293* 2713*303* 257.3*28.0 233.5*27.8 240.7*29.1

US 194.2*20.1 191.5*17.7 1773*16.9 190.7*21.0 1803*18.8 181.7*19.0

S/S 173.8*19.6 184.5*23.0 185*23.9 2063*27.1 186.7*19.8 174*18.6

B ilirubin
(m g/dl)

UA 11*0.4 13*03 23*03* 3.1*03* 37*03* 235*0.2

S/A 1.9*0.4 1.8*0.1 1.9*03 2.1*03 1.9*03 1.9*03

US 1.4*03 1.4*03 1.5*03 1.6*03 1.5*03 1.4*03

S/S 1.5*03 1.4*0.1 1.4*0.1 1.6*03 13*03 1.5*03
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Table 42  - continued.

Total
Protein
(g/dl)

L/A 7.4*02 7.6*01 7.5*0.1 7.5*01 7.4*02 7.1*02

S/A 6.7*02 7.4*01* 71*01* 71*01* 71*0.1* 71*0.1*

L/S 70*0.2 7.0*01 7.0*01 71*01* 71*02* 71*0.1

S/S 6.7*02 6.8*01 6.8*01 71*01* 71*02* 7.1*02

Albumin
(g/dl)

L/A 3.3*0.1 3.4*00 3.4*0.1 3.4*0.1 3.3*0.! 3.2*0.1

S/A 3.1*0.I 31*0.1* 31*0.1 3.4*0.0* 3.3*0.0 31*0.0

L/S 3.0*0.1 3*0.1 3*0.1 312*0.1* 3.1*0.1 3.1*0.1

S/S 2.9*0.1 3.0*0.1 3.0*0.1 3.17*0.1* 31*0.1* 3.1*0.1*

Globulin
(g/dl)

L/A 4.1*0.2 41*01 4.2*01 4.1*01 4.1*02 3.9*02

S/A 3.6*0.2 4.1*01* 3.9*01 41*01* 4.1±0.1* 41*0.1*

L/S 4*0.2 4.0*01 4*0.2 4.3*01 41*02* 4.1*02

S/S 3.8*03 3.9±0.3 3.9*03 4.1*01 4.1*01 4.0*0.3

BUN
(m g/dl)

L/A 17.7*0.8 201*01* 20*01* 18.2*1.0 17.7*12 17*1.0

S/A 18*1.2 19.3*10 18.5*11 18.7*11 181*12 18*1.1

L/S 14.8*1.1 151*1.0 14.7*1.0 13.8*1.0 14.5*0.9 14.8*12

S/S 15.8*1. 16.5*0.8 14.5*1.0 14.3*0.6 15.2*0.9 15.3*0.6

Creatinine
(m g/dl)

L/A 1.3*0.1 1.6*0.!* 1.5*0.1 1.3*0.1 1.2*0.0 11*0.1*

S/A 1.2*01 1.4*0.1* 1.2*0.1 11*0.1 !.I*0.1 11*0.1

L/S 11*0.1 1.4*0.1 11*0.1 11*0.1* 11*0.1* 11*01*

S/S 1.33*0.11 112*0.12 11*0.1 13*0.1 11*0.1 11*0.06

Calcium
(m g/dl)

L/A 12.0*0.2 11.6*01 11.8*0.2 12.1*0.1 123*0.1 121*0.1

S/A 11.9*0 2 121*01* 123*0.2 123*0.1 124*0.1* 121*0.2

L/S 12*01 11.7*01 12*0.4 126*0.1* 125*02* 12.4*0.1

S/S 11.7*01 11.9*01 121*01* 126*02* 126*02* 123*0.1*

Phosphorus
(m g/dl)

L/A 3.6*01 5.7*01* 31*01* 24*0.1* 20*0.1* 21*0.1*

S/A 19*01 41*01* 3.7*01* 26*0.1 24*0.1* 24*0.1*

US 3.1*01 19*013 212*0.17* 227*0.07* 115*019* 215*0.08*

s /s 3.1*0J 218*010* 242*0.15* 243*0.12* 218*0.13* 205*0.16*
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Table 4.2 - continued

Sodium
(mmoI/L)

L/A 135.5±0.5 135*0.6 137*0.7 135.7*1.1 135.8*0.7 136.8*0.7

S/A 135.2*0.8 1375*05* 136*1.0 1361*1.2 136*0.8 136.7*0.4

L/S 135*0.7 135.8*1.1 1361*0.9 136.5*0.5 135.5*0.4 135.7*0.6

S/S 135.8*0.8 135.7*0.8 135.8*0.6 136.5*1.0 135.7*0.3 135*0.8

Potassium
(mmol/L)

L/A 3.7±0.2 3.6*0.1 31*0.1* 3.7*01 45*01* 3.7*01

S/A 3.4*0.2 3.7*0.1 3.6*01 3.7*01 3.6*01 3.4*01

L/S 3.4*0.1 3*0.2 3.5*0.1 4.0*0.1* 35*0.1* 3.7*01

S/S 3.3*01 3.5*0.1 35*0.0* 3.7±0.1* 35*0.1* 3.6*01

Chloride
(mmol/L)

L/A 100.7*0.7 101.3*0.7 102.8*0.8 102.7*1.2 103*1.0* 102.5*0.8

S/A 102*1.1 103.2*0.7 102.3*0.9 101.8*0.9 102.7*0.6 102.2*0.5

L/S 99*0.9 100.8*0.4 104*05* 103*0.7* 1025*0.4* 1025*05*

S/S 99.7*0.5 1018*0.6* 1035*0.6* 1025*05* 1025*05* 101.3*0.9

Anion Gap 
(mmol/L)

L/A 6.1*0.8 10.6*0.4* 85*01* 7.4±I.O 8.7*05* 7.1±0.9

S/A 6.5±0.9 95*1.0* 8.0*0.5 8.2*0.6 81*0.6 5.8*1.0

US 6.7*0.9 7.3±0.6 61*0.7 8.6*11 7.8*1.0 6.8*11

S/S 5.3±0.5 6.2*1.0 6.1*0.8 7.6±0.6* 7.4*1.0 61*1.0

Magnesium
(mg/dl)

UA 1.8*0.1 25*0.1* 1.9*0.1 1.7*01 1.8*0.0 1.8*01

S/A 1.7*0.1 2.6*0.!* 15*0.1* 1.7*01 1.7*01 1.8*01

US 1.7±0.l 1.6*0.0 1.8*0.1 1.8*01 1.8*01 1.8*0.0

S/S 1.6*0.1 15*0.1* 15*0.1* 15*01* 15*0.1* 1.8*01
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study. The mechanism involved in ATP-MgCI2-induced pulmonary hypertension in 

horses is not known but may be due to differences in purinergic receptor density in the 

pulmonary vasculature. ATP can cause vasoconstriction or vasodilatation, principally 

by activation of purinergic P2X or P2Y receptors, respectively (26). Unlike P2Y 

receptors which are located on vascular endothelium and require generation of second 

messengers, P2X receptors are located on vascular smooth muscle cells and use ligand- 

gated ion channels to induce a response (26). Therefore, response time is faster with 

activation of P2X receptors. There may be a greater density of P2X receptors in the 

equine pulmonary vasculature compared with other species. Additionally, when ATP- 

MgClj is administered into the external jugular vein, the pulmonary vasculature is the 

first major vascular bed encountered. Therefore, it will be exposed to the highest 

concentration of ATP. When ATP circulates through the lung, the majority of ATP is 

degraded to other adenine nucleotides and nucleosides by ectonucleotidases (27). 

Adenosine, a breakdown product of ATP, can activate adenosine/Pl receptors 

(principally A^ located on vascular smooth muscle cells leading to vasodilatation. 

Vascular beds downstream from the lungs will be exposed to higher concentrations of 

ATP degradation products than ATP itself, thereby causing systemic vasodilatation, 

which was observed in this study.

Horses administered endotoxin, irrespective of treatment, developed systemic 

hypertension, whereas horses administered ATP-MgCl2 alone developed systemic 

hypotension. Intravenous administration of ATP-MgCl2 has been documented to cause 

a rate-dependent decrease in MAP and SRl, principally via vasodilatation (18,19). The 

decrease in SRl despite the presence of systemic hypertension in L/A horses was

. . .  ,167 .
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secondary to an increase in CO, which was not observed in L/S horses. The reduction in 

SRl observed in L/A horses could lead to improved peripheral perfusion.

White blood cell count decreased in horses administered endotoxin, and the 

magnitude of the decrease was more pronounced in the group receiving ATP-MgCl2. 

Neutropenia was only documented in the L/A group. Horses receiving ATP-MgCl2or 

LPS alone developed a mild, transient leukopenia without a corresponding neutropenia. 

The development of leukopenia in S/A horses and the difference in the 

leukocyte/neutrophil response between L/A and L/S horses may be due to upregulation 

of adhesion molecules by ATP. Adenine nucleotides have been documented to act 

directly on leukocytes to enhance expression of the CD1 lb/CD 18 adhesion molecule 

(28). Additionally, ATP has been demonstrated to stimulate leukocyte adherence to 

cultured endothelial cells via P2Y and P2U receptor-mediated events (29).

One potential explanation for the apparent negative effects of ATP-MgCl2 on 

pulmonary artery pressure and leukocyte/neutrophil counts in the L/A group, compared 

with the L/S group, may be that the response to endotoxin in the L/S group was not as 

marked. In contrast to a previous study of endotoxin administration in horses (9), the 

L/S horses in this study did not develop tachycardia, hypoxemia, or neutropenia. 

Another possible explanation would be that endotoxin was present in our ATP-MgCl2 

preparation. When the ATP-MgCl2 solution was analyzed using the Limulus 

amoebocyte lysate assay, an endotoxin dose equivalent to 1 pg/kg of body weight was 

detected. Although speculative, we do not believe this dose would cause alterations in 

clinical signs or hemodynamic and clinicopathologic variables. However, there are no 

reports in the literature of this dose of endotoxin being administered to horses, so
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definitive conclusions regarding the contribution of the endotoxin in our ATP-MgCl2 

solution to the overall changes observed in the L/A horses cannot be made. Based on the 

results o f this study, we cannot be certain whether ATP-MgCl2 truly potentiated the 

negative effects produced by endotoxin administration.

In the L/A, but not L/S, horses developed thrombocytopenia during the ATP- 

MgCl2 infusion. Endotoxin has been demonstrated to induce platelet aggregation in 

horses (30). ADP is an agonist of platelets and is present in platelet dense granules 

along with ATP (31,32). Following exposure to endotoxin, ADP is released from 

platelet dense granules, contributing to platelet aggregation (33,34). The combination of 

endotoxin and ATP-MgCl2, some of which will circulate as ADP, most likely 

contributed to the development of thrombocytopenia, via platelet aggregation, observed 

in the L/A group.

In conclusion, ATP-MgCl2 administration was not protective during 

experimentally-induced endotoxemia in clinically, healthy, conscious adult horses. 

Furthermore, the use of ATP-MgCl2 during endotoxemia may worsen the hemodynamic, 

metabolic and hematologic status of affected horses. However, the pulmonary 

hypertension and hypoxemia that developed in the L/A group was transient and 

accompanied by an increase in oxygen delivery. Since ATP and other adenine 

nucleotides are released from cells during shock, the potential role of adenine 

nucleotides in the development of hemodynamic derangements, leukocyte adherence, 

and coagulopathies during endotoxemia warrants further investigation.
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4.5 Product Information

•Quik-Cath 2N-11-10, Baxter Healthcare Corporation, Deerfield, 111.

bIntramedic polyethylene tubing model PE205, Becton Dickson, Sparks, Md.

Tentalumen thermodilution catheter 41216-01, Abbott Critical Care Systems, Abbott 
Laboratories, Hospital Products Division, North Chicago, 111.

dAngiocath 382269, Becton Dickson Infusion Therapy Systems Inc, Sandy, Utah.

‘Intramedic polyethylene tubing model PE260, Becton Dickson, Sparks, Md.

faormosol, Abbott Laboratories, North Chicago, 111.

“Injector 500, Columbus Instruments, Columbus, Ohio.

hArrow radial artery catheterization set RA-04020, Arrow International Inc, Reading, 
Pa.

T)TX plus DT-6012, Becton Dickinson Infusion Therapy Systems Inc, Sandy, Utah.

jCardio Max Q model 85 thermodilution cardiac output computer, Columbus 
Instruments, Columbus, Ohio.

‘'Polygraph model 7D, Grass Instruments, Quincy, Mass.

'Chart recorder model 25-60, Grass Instruments, Quincy, Mass.

"Lipopolysacccharide L2880, Sigma-Aldrich Inc, St. Louis, Mo.

"Life care pump model 4, Abbott Laboratories, North Chicago, III.

"Adenosine 5-triphosphate disodium salt A3377 and magnesium chloride hexahydrate 
M2670, Sigma-Aldrich Inc, S t Louis, Mo.

PpH/blood gas analyzer model 238, Bayer Corp, Norwood, Mass.

••Baker systems 9110 plus, Biochem Immunosystems Inc, Allentown, Pa.

rAU 600, Olympus Corporation Clinical Instrument Division, Irving, Tex.

*SAS statistical software, version 8.0, SAS Institute, Cary, NC.
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CHAPTER 5. IN VITRO RESPONSES OF EQUINE COLONIC 
ARTERIAL AND VENOUS RINGS TO ADENOSINE 
TRIPHOSPHATE
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5.1 In troduction

In horses, strangulating volvulus of the ascending colon is a disease 

characterized by colonic luminal obstruction and vascular occlusion, which results in 

colonic ischemia, mucosal necrosis and vascular thrombosis (1). In experimental 

models of complete arteriovenous occlusion of the ascending colon, colonic blood flow 

has been shown to remain significantly below baseline values for at least 4 hours after 

surgical correction (2). The disease is associated with a high mortality, which may be 

related to a sustained reduction of blood flow and hypoperfusion (due to increased 

vascular resistance) after surgical correction and continued ischemic injury. Endothelial 

damage in the colonic vasculature occurs subsequent to ischemia-reperfusion, and this 

damage can be exacerbated by endotoxin (3). Therefore, the sustained decrease in 

colonic blood flow may be associated with endothelial damage in the colonic 

circulation, leading to the release of vasoconstrictive agents and loss of endothelium- 

derived vasorelaxants, which subsequently may lead to vasoconstriction.

Extracellular purines have important and diverse effects on many biological 

processes, including regulation of vascular tone (4). Adenosine triphosphate (ATP) is 

principally an endothelium-dependent vasodilator that is rapidly metabolized and has a 

short duration of action (5). The vasodilatory effects of ATP are mediated primarily 

through activation of purinoreceptors located on both the endothelium and vascular 

smooth muscle (6). The purinergic 2Y (P2Y) receptors located on endothelial cells, 

when activated by ATP, couple to G proteins to activate phospholipase C leading to the 

formation of inositol-3-phosphate (IP3) and mobilization of intracellular Ca2+ (4). 

Vasodilatation occurs by Ca2+-dependent activation of endothelial nitric oxide synthase
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(eNOS) with subsequent generation of nitric oxide (NO) and by generation of 

endothelial-derived' hyperpofarizing factor (EDHF) (4). Generation of protein kinase C 

and subsequent phosphorylation of mitogen-activated protein kinase appears to be the 

pathway by which P2Y receptors on endothelial cells mediate prostacyclin synthesis and 

release to generate additional vascular relaxation (7,8). P2Y receptors are also present 

on vascular smooth muscle and mediate vasodilatation. The mechanism underlying 

smooth muscle cell relaxation is not known but may involve activation of K+ channels 

(9). When ATP is degraded by ectonucleotidases into adenosine, an adenosine 

purinoreceptor (predominantly Aj) is activated, leading to vascular smooth muscle 

relaxation (10).

We have recently evaluated the local colonic and systemic hemodynamic 

alterations associated with intravenous infusion of a combination of ATP and 

magnesium chloride (ATP-MgClj) in clinically healthy, anesthetized, adult horses (11). 

Administration of ATP-MgCl2 at an infusion rate of 0.3 mg of ATP/kg of body 

weight/min resulted in a significant decrease in colonic vascular resistance, principally 

via vasodilatation (11). These results suggest that ATP-MgCl2 could have beneficial 

effects during low-flow conditions of the gastrointestinal tract by regulating vascular 

tone.

Since endothelial damage has been demonstrated to occur during colonic 

ischemia and reperfusion, the effects of ATP on regulation of vascular tone may be 

diminished or abolished owing to loss of endothelial-derived vasorelaxants, specifically 

NO. The purpose of this study was to evaluate the effects of ATP on vasomotor tone 

(specifically the vasodilatory response) of isolated equine colonic arterial and venous
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rings in the presence and absence of endothelium and in the presence of a nitric oxide 

synthase inhibitor, N“-nitro-L-arginine methyl ester (L-NAME). We hypothesized that 

ATP would cause vasodilatation in a concentration-dependent manner in both colonic 

arteries and veins. Secondly, the magnitude of the vasodilatory response in the arteries 

would be significantly attenuated with endothelial removal or the addition of L-NAME. 

Finally, we predicted that there would be no significant differences between veins with 

intact endothelium, denuded endothelium and those treated with L-NAME. Because 

veins have been shown to produce a weak response, compared with arteries, during 

endothelium-dependent relaxation (12) and the predominant site of action of nitric oxide 

is arterial resistance vessels (13), endothelium removal or blockade of nitric oxide in 

veins should minimally affects the vasodilatory response.

5.2 M aterials and Methods

5.2.1 Horses - This study was approved by the Institutional Animal Care and 

Use Committee of Louisiana State University. Segments of mesenteric vessels were 

collected from the left ventral colon of fourteen adult horses destined for euthanasia for 

reasons unrelated to cardiovascular or gastrointestinal tract diseases. Horses were 

deemed free of gastrointestinal and vascular disease and were euthanatized with an 

overdose of sodium pentobarbital* (100 mg/kg, IV). The vessels were collected and 

placed in chilled, oxygenated (95% 0 2 and 5% CO2 ) Tyrode’s solution until used. The 

composition of Tyrode’s solution is: 136.87 mM NaCl; 2.68 mM KC1; 11.90 mM 

NaHC03; 5.55 mM Dextrose; 1.81 mM CaCl2; 1.07 mM MgCl2; and 0.36 mM 

NaHjPCV
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5.2.2 Experimental design - The colonic artery and vein were cleansed of 

excess connective tissue and cut into 4-nun wide rings. Each ring was placed in an 

organ bath containing oxygenated Tyrode’s solution at 37 °C. One side of the vessel 

ring was fixed to the floor of an organ bath and the other side attached to a force- 

displacement transducer1’ which was interfaced with a polygraph0 (14,15). An initial 

tension of 2 g was applied to the rings, which were allowed to equilibrate for 4S 

minutes. Preliminary studies and previous reports from our laboratory have 

demonstrated that 2 g tension applied to equine colonic vessels resulted in optimum 

vessel responsiveness (14,16). The bath solutions were replaced at 15-minute intervals 

and tension readjusted to 2 g each time, except following the final wash.

5.2.2.1 Trial I - Arteries and veins (n=7 horses) with intact endothelium 

(endo +) and endothelium that was removed by gentle mechanical debridement (endo -) 

(16,17) were used. Sixteen tissue baths were used during this phase of the study. Two 

runs were performed for each horse in order to accommodate the 4 vessel type 

combinations (artery endo + and endo - and vein endo + and endo -). The vessel types 

were randomly assigned to each run for each horse. After equilibration, each ring was 

precontracted with a single dose of 10*7 M and 1.8 x 10*8 M endothelin-l (ET-l)d for 

arteries and veins, respectively (Table 5.1). The ECS0 (concentration required to 

produce 50% maximum contraction) values for colonic arteries and veins are 2.3 x 10'7 

M and 6.7 x 10*8 M, respectively (18). The doses o f ET-1 used in the present study were 

selected based on results of the study by Venugopal and colleagues (18) and from pilot 

studies in our laboratory. The selected doses produced a minimum of 500 mg of
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Table 5.1 - Mean (±SEM) mg of stable contraction and mg of stable contraction/mg of 
vessel dry weight induced by endothelin-l(10'7 M for arteries and 1.8 x 10'8 M for veins) 
for colonic arterial (A) and venous (V) rings with (+) and without (-) intact endothelium 
(Trial I) or in the presence of 10"4 M Nw-nitro-L-arginine methyl ester (LN) (Trial II).
No statistical comparisons were performed on this data.

Vessel Type Trial mg Tension mg Tension/mg Dry Weight

A+ I 1322±105.2 156.0±22.06

A- I 2433±178.0 315.2±42.9

LNA+ n 1319±101.2 167.1±9.9

V+ i 1936±136.7 155.1±16.6

V- i 1445±105.0 142.5±13.0

LNV+ n 2624±232.4 265.5±33.5
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contraction, which was the minimum response that was stable, as well as relatively 

consistent responses in all vessel types utilized. Vessel rings that did not attain 500 mg 

of tension were rejected. Stock solutions of ET-l were prepared in distilled water (10*2 

M) and stored in 70-ia1 aliquots at -70 °C until used. On the day of the experiment, the 

ET-l stock solution was thawed and appropriate dilutions were made with distilled 

water. When the contractile response reached a plateau, a non-cumulative concentration 

(10’8 to 10'3 M) response curve for ATP* was determined over 30 minutes for each vessel 

type. The ATP was prepared in distilled water immediately prior to performing the 

concentration-response curve. Additionally, 2 rings for each vessel type received only 

ET-l to serve as a time controls.

5.2.2.2 Trial II - Arteries and veins (n=7 horses) with intact 

endothelium were obtained from a different group of horses than those used in Trial I. 

Eight tissue baths were used during this phase of the study. Similar to Trial 1,2 runs 

were performed on each vessel type (artery endo + and vein endo +), with the order 

randomized for each horse. The vessels were incubated with freshly prepared 10“* M 

N"-nitro-L-arginine methyl ester (L-NAME)f for 30 minutes before determining the 

non-cumulative concentration-response relationship for each dose of ATP. The same 

concentrations of ATP were used as in Trial I. Similar to Trial I, the ATP and L-NAME 

were prepared fresh daily. For each vessel type, one ring received only ET-l to serve as 

a time control. Additionally, one ring from each vessel type was treated with 10"4 M 

ATP in the absence of L-NAME to serve as a positive control in order to compare 

whether significant differences in relaxation response to 10"* M ATP existed between 

vessels used in Trial I and n.
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Separate arterial and venous rings from each horse were prepared (endo + and 

endo - for Trial I and endo + for Trial D) and placed in neutral-buffered formalin. The 

vessels rings were processed and stained with hematoxylin and eosin. Cross-sectional 

segments were examined histologically to evaluate the integrity, or lack thereof, of the 

endothelial and smooth muscle layers.

5.23 Data processing and statistical methods - The percentage relaxation for 

each vessel type was calculated based on the relaxation from the stable contraction 

induced by ET-1 to the resting tension, which was considered 100%. The percentage 

relaxation was calculated at 1 ,3 ,5 ,7 ,9 ,11 ,13  and 15 minutes after application of the 

ATP. Fifteen minutes was selected as our end-point because the contraction induced by 

ET-1 in the time-control vessels was stable during this time period, which indicates that 

any relaxation that occurred during that time was an effect of the ATP and not 

secondary to loss of the pre-contraction generated by ET-1. A curve was generated from 

these points and the area under the curve (AUC) was estimated using the trapezoid 

method (19). The AUC represents the integrated percentage relaxation over time and 

thus is represented by the units percentage relaxation time (% minutes). Only the area 

above the x-axis (relaxation) was included in the calculation.

The AUC was considered continuous. The AUC followed a normal distribution 

based on the Shapiro-Wilk statistic with failure to reject the null hypothesis of normality 

at p^O.05.

The AUC was evaluated using a fixed effect linear model assuming a nested 

factorial design. To account for the fact that different vessel types were performed on 

different horses, the model was set up to include a fixed effect o f trial. Trial I included
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vessel types A+, A-, V+, and V-. Trial 2 included vessel types LNA+ and LNV+. Thus, 

vessel type was nested within trial with concentration (the repeated effect) factored over 

vessel type. The interaction term of vessel type and concentration was used as the error 

term to test for significant main effects. Where there were significant effects of 

concentration and of the interaction of vessel type and concentration at p^O.05, selected 

ad hoc comparisons were made, using least square means. Comparisons were made 

within vessel types for all concentrations to the ET-1 control, maintaining an overall 

type I error o f 0.05. Comparisons were made among vessel types at concentrations 10*3 

M and 10*4 M, maintaining an overall type I error of 0.05. Thus, unless specified, p is £

0.05 where a significant difference is noted.

To confirm that the horses of each trial behaved similarly, the AUC for 1 O'4 M 

ATP concentration for vessel types in Trial I were compared to 10-4 M ATP 

concentration (without L-NAME) in Trial 2 using the methodology described above. 

PROC UNIVARIATE, PROC MIXED and PROC GLM8 were used for all analyses.

S3 Results

Histologic evaluation of each representative vessel ring indicated the presence of 

intact endothelium and smooth muscle in endo + vessels and complete removal o f 

endothelium without damage to the smooth muscle in endo - vessels. The data from 

Trial I and Q studies demonstrated relaxation of colonic arteries and veins with and 

without intact endothelium and those pre-treated with L-NAME in response to ATP 

(Table 5.2; Figure 5.1 and 5.2). Concentrations o f ATP from lO-6 to 10'3 M induced a 

concentration-dependent initial, rapid, and transient contraction followed by relaxation
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Table 5.2 - Mean (±SEM) % maximum relaxation and % maximum attenuation for 
colonic arterial (A) and venous (V) rings with (+) and without (-) intact endothelium or 
in the presence of I O'4 M Nu-nitro-L-arginine methyl ester (LN) in response to 10-4 M or 
10° M ATP over a 15-minute time period. The % maximum attenuation is based on the 
relative change between (-) and (LN) vessels compared to the (+) vessels. A negative 
value indicates less relaxation and a + value indicates more relaxation. The time to 
attain maximum relaxation may vary among and between vessel types. No statistical 
comparisons were performed on this data.

| lO^MATP lO^M ATP

Vessel Type % Maximum 
Relaxation

% Maximum 
Attenuation

% Maximum 
Relaxation

% Maximum 
Attenuation

A+ 36.71±4.39 56.90±5.94

A- 24.42±9.16 -30.06±22.19 33.99±12.52 -45.17±18.45

LNA+ 36.98±9.29 -1.425±18.54 75.09±14.76 33.80±25.62

V+ 56.94±9.47 59.46±3.55

V- 36.65±5.98 -29.16±12.58 41.28±4.15 -30.31±6.47

LNV+ 34.30±7.60 -29.52± 17.98 62.47±5.85 6.35±10.72
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Figure 5.1 - Time-response curve for mean (±SEM) percent relaxation of equine 
colonic arterial (A) and venous (V) rings to 10"4 M ATP that were precontracted with 
endothelin-l. Because percentage relaxation was not used in the study to identify 
significant differences within and between vessel type/treatment, no statistical 
comparisons were made.
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Figure 5.2 - Mean (±SEM) percent relaxation time (area under the curve) of equine 
colonic arterial (A) and venous (V) rings after 15 minutes of exposure to ATP (10*8 to 
10'3 M) following precontraction with endothelin-1. Endo + = intact endothelium; 
Endo - = endothelium removal; LN = endo + vessels incubated with 10"4 M N“-nitro-L- 
arginine methyl ester (L-NAME); C = time control (ET-1 only). Within group 
comparisons were made at 10"4 M and 10*3 M ATP. Different letters (a,b) indicate 
significant differences (p £ 0.05) between vessel types within that concentration of 
ATP.
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in all vessel types. There was a significant effect of ATP concentration, vessel type and 

their interaction on the percentage relaxation time (Figure 5.2). There were no 

significant differences between the time control vessel rings. There was no significant 

difference in the time control vessel rings (ET-1 only) during the 15-minute evaluation 

period.

53.1 Trial I - At 15 minutes, ATP concentrations of 10"4 M and 10'3 M caused 

significant relaxation, for endo + arteries and veins and endo - veins. Significant 

relaxation for endo - arteries was only observed at 10*3 M ATP. Endo + and endo - 

vessels at 10*3 M and 10-4 M ATP revealed significant differences in relaxation from the 

stable contraction induced by ET-1 in arteries and veins (Figure 5.2). When the 

relaxation response between arteries and veins was compared, there were no significant 

differences in relaxation between endo + arteries and veins at 10*3 M ATP and endo - 

arteries and veins at 10‘3M and 10-4 M ATP. However, endo + arteries relaxed 

significantly less than endo + veins at 10-4 M ATP.

5 3 3  Trial II - There was no significant difference in relaxation response 

between the vessels treated only with lO-4 M ATP from Trial I and Trial II. At 15 

minutes, significant differences in relaxation from the stable contraction induced by ET- 

1 was observed for L-NAME-treated arteries and veins at I O'4 M and 10*3 M ATP.

There were significant differences in percentage relaxation time between endo - arteries 

and veins (Trial I) and their L-NAME-treated arteries and veins (Trial II) at 10*3 M ATP 

and endo + veins (Trial I) and their L-NAME-treated counterpart (Trial II) at I O'4 M 

ATP (Figure 53). There were no significant differences in relaxation response between 

L-NAME-treated arteries and veins at 10'3 or lO"4 M ATP.
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5.4 Discussion

The results of this study yielded several important findings. First, ATP can 

overcome ET-1-induced contraction. Second, the relaxation response of equine colonic 

arterial and venous rings to ATP is dose-dependent. Third, removal of endothelium 

attenuates but does not eliminate the relaxation response to ATP in both colonic arteries 

and veins. Fourth, the contribution of NO to the relaxation response is minimal and 

appears to be more appreciable in veins. Finally, the vascular response to ATP is 

biphasic at high concentrations (initial transient contraction followed by slow 

relaxation).

In contrast to numerous studies that have demonstrated that the mechanism of 

ATP-induced vasodilatation is principally mediated by NO, the results of the present 

study suggest that NO does not appreciably contribute to the endothelium-dependent 

component o f the relaxation response to ATP in normal equine colonic vessels. A study 

by Simonsen and colleagues evaluating the effect of ATP on vasomotor tone of lamb 

isolated coronary small arteries demonstrated that mechanical removal of the 

endothelium, but not inhibition of NOS, partially reduced the relaxations elicited by 

exogenously added ATP (20). The results indicated that ATP relaxed lamb coronary 

small arteries through receptors located on both smooth muscle and endothelial cells. 

Furthermore, the results exclude the possibility that NO is the mediator of the • 

endothelial component of the relaxations to ATP in that particular vessel preparation 

(20). The results of the present study correlate with results from the study by Simonsen 

and colleagues and our in vivo study (11), which failed to identify a significant increase
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in colonic arterial and venous plasma NO concentrations in horses administered ATP- 

MgCl^ despite the development of profound colonic vasodilatation.

Several possible explanations for the observations noted in the present study and 

the in vivo colon study (11) exist. Although not evaluated, prostacyclin may play an 

important role in endothelium-dependent ATP relaxation in equine colonic arterial and 

venous rings. Further studies using indomethacin to block prostacyclin synthesis would 

be necessary to elucidate the role of prostacyclin in ATP-induced vasodilatation. 

Additionally, activation of P2Y receptors with subsequent IP3 formation and Ca2+ 

mobilization can lead to the synthesis of endothelium-derived hyperpolarizing factor, 

which may also contribute to the vascular relaxation response (4).

Another possible explanation for the apparent lack of involvement of NO in the 

vasodilatory response to ATP would be that we did not completely inhibit NOS. The 

dose of L-NAME used in this study (10-4 M) is comparable to other studies that have 

evaluated the role of NO in the vascular response in horses (15,17,21). Concentrations 

of L-NAME ranging from 10"* M (21) to 10° M (17) have been used and shown to be 

effective in blocking NO production. In our initial pilot studies, we compared colonic 

vascular responsiveness to acetylcholine in the presence of 10'5 M and 10"4 M L-NAME. 

Our results indicated that lO"4 M yielded better blockade than 10‘s M (unpublished data). 

Furthermore, results from an in vivo L-NAME pharmacokinetic study in horses 

demonstrated that systemic and pulmonary hypertension rapidly develops following an 

IV bolus injection of L-NAME (40 mg/kg) (personal communication). Therefore, 

incomplete blockade of NOS is unlikely to explain the results obtained in this study.
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One observation that was not expected was the blockade of the endothelium- 

dependent component of the relaxation response of colonic veins to I O'4 M ATP when 

incubated with 104 M L-NAME. The same blockade was not observed with I O'3 M 

ATP or in the artery preparations. This finding is in contrast to studies that have 

demonstrated that the predominant site of action of nitric oxide is arterial resistance 

vessels (13). One reason to explain these findings would be that at physiologic 

concentrations of ATP (104 M), endothelium-dependent relaxation in colonic veins is 

NO-mediated. Although speculative, when superphysiologic concentrations of ATP 

(10'3 M) were used, other endothelium-dependent vasodilators (prostacyclin and EDHF) 

may become more important. The reason why L-NAME blocked the endothelium- 

dependent component of the relaxation response to 104 M ATP in colonic veins but not 

arteries in the present study is not known and warrants further investigation.

Endothelin-1 was selected as our precontractile agent for several reasons. First, 

since ATP historically is a slowly relaxing agent, we wanted a precontractile agent that 

would sustain the contraction for a minimum of IS minutes in order to more fully 

evaluate the effects of ATP on in vitro vasomotor tone. Secondly, since ET-1 is the 

most potent vasoconstricting agent presently identified and it has been implicated as a 

cause of decreased blood flow that commonly occurs during ischemia (22), we wanted 

to determine whether ATP could overcome ET-1-induced vasoconstriction. Previous 

studies in our laboratory demonstrated that a consistent, prolonged contraction could be 

achieved in colonic arteries and veins with ET-1 (18) and our pilot studies showed that 

ATP could overcome this ET-1-induced vasoconstriction (unpublished data).
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In order to evaluate relaxation responses in vascular ring preparations, the rings 

must first be contracted to establish tension so a relaxation response can be detected. 

One limitation of in vitro relaxation studies is the inability to control the amount of 

stable contraction induced by a vasoconstricting agent or electrical field stimulation.

The magnitude of the response to a vasodilating agent may vary depending upon the 

amount of initial tension generated. The effect of various tensions on the relaxation 

response to ATP was not evaluated in the present study. Therefore, interpretation of 

results for the different vessel types used in this study may vary if the relaxation 

response is significantly influenced by the initial tension generated.

In this study, we used an unstable form of ATP rather than a stable analog. The 

ATP used in the present study was the same ATP that we have been using in our in vivo 

studies (ATP combined with magnesium chloride) (11,23). Since significant 

vasodilatation occurs in vivo with IV administration, the mechanism of the vasodilatory 

response was important to determine. Particularly, determining whether the form of 

ATP that would be used in clinical situations could cause vasodilatation in the absence 

of endothelium, as could occur during colonic ischemia, was vital to future studies 

evaluating the efficacy of ATP during colonic ischemia.

Unlike our in vivo studies where we used ATP-MgCl2 (11,23), we only 

evaluated the in vitro effects of ATP in the present study. Magnesium has been 

reported to be a potent vasodilating agent and has been demonstrated to potentiate 

vasodilatation when combined with ATP in vivo (24). However, we do not believe that 

magnesium was a major contributor to the vasodilatation response observed in the in 

vivo studies. In an in vitro pilot study, we documented that addition of MgCl2 (10'12to
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lO^M) to ATP (equimolar concentrations) did not enhance the relaxation response of 

equine colonic arterial and venous rings (with intact and denuded endothelium) 

precontracted with endothelin-1, compared with ATP alone (unpublished data). 

Additionally, MgCl2 alone did not cause appreciable relaxation of colonic vascular rings 

(with intact and denuded endothelium) precontracted with endothelin-1 (unpublished 

data).

Because the ATP used in the present study is subjected to degradation by tissue 

ectonucleotidases to adenosine, it was not possible to determine whether ATP or 

adenosine mediated the smooth muscle component of the vascular relaxation response. 

As previously mentioned, both P2Y receptors, which respond to ATP, and A2 receptors, 

which respond to adenosine, have been identified on vascular smooth muscle (4). 

Additional studies using specific adenosine blockers would need to be performed in 

order to determine what percentage of the smooth muscle relaxation response was 

attributable to ATP and what percentage was attributable to adenosine.

Numerous studies have documented that high concentrations of ATP cause a 

transient vascular smooth muscle contraction followed by a slow, sustained relaxation. 

Similar results were observed in this study. The mechanism of ATP-induced 

contraction is via activation of P2X receptors located on smooth muscle cells (25,26). 

Ligand binding to the P2X receptor results in the rapid, non-selective passage of cations 

(N a\ K \ Ca2+) across the cell membrane resulting in an increase in intracellular Ca2+, 

membrane depolarization, and smooth muscle relaxation (25,26). Whether the same 

mechanism for ATP-induced vasoconstriction occurs in the horse is not known. The 

concentration-dependent initial, transient contraction induced by higher concentrations
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of ATP combined with the lack of specific antagonists to block this response, 

complicates interpretation of the relaxation effects of ATP.

The vascular rings used in the present study were collected from normal horses. 

Mechanically removing the endothelium attempts to mimic the effect of diseases of the 

colon that lead to endothelial dysfunction. However, disease mechanisms not tested in 

this study could alter the vascular response to ATP, both in vivo and in vitro. 

Additionally, the responses and mechanisms induced by ATP might be different along 

the colonic vascular bed. The segments used in this study might not be predictive of 

responses of the microvasculature, which are important to the various components of 

the intestinal wall.

In the present study, exogenous ATP applied to both equine colonic arterial and 

venous rings precontracted with ET-1 in vitro causes a biphasic response characterized 

by initial, transient contraction followed by slow, substantial and sustained relaxation. 

The relaxation response is attenuated by endothelium removal but it is not inhibited by 

blocking NO production, suggesting a relaxation mechanism other than NO. Further 

studies evaluating the role of prostacyclin and adenosine in the relaxation response need 

to be performed to further define the mechanism of action of ATP-induced 

vasodilatation. Since vasodilatation does occur in the absence of endothelium, further 

studies evaluating the efficacy of exogenously-administered ATP (in the form of ATP- 

MgClj) to modulate vasomotor tone during colonic ischemia warrants investigation.

5.5 Personal Communication

Carlos R.F. Pinto, DVM, DACT, Department of Veterinary Clinical Sciences, School of 
Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.
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5.6 Product Information

aBeuthanasia-D Special, Schering-Plough Animal Health Corp., Union, NJ.

'’Model FT03 force-displacement transducer, Grass Medical Instruments, Quincy, Mass. 

'Model 7D polygraph, Grass Medical Instruments, Quincy, Mass. 

dEndothelin-l E-7764, RBI/Sigma, Natick, Mass.

'Adenosine 5'-triphosphate disodium salt A3377, Sigma-Aldrich Inc, St. Louis, Mo. 

fNu-nitro-L-arginine methyl ester N5751, Sigma-Aldrich Inc, St. Louis, Mo. 

gSAS v 8.0, SAS Institute, Cary, NC.
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CHAPTER 6. QUANTITATION OF ADENINE NUCLEOTIDES 
IN EQUINE COLONIC MUCOSAL TISSUE USING HIGH 
PERFORMANCE LIQUID CHROMATOGRAPHY

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

6.1 Introduction

Liquid chromatography (LC) refers to any chromatographic procedure in which 

the moving phase is a liquid (1). Since LC is not limited by sample volatility or thermal 

stability, it is ideally suited for the separation of macromolecules and ionic species of 

biomedical interest, labile natural products, and a wide variety of other high-molecular- 

weight and/or less stable compounds. Chromatographic separation is the result of 

specific interactions between sample molecules and the stationary and moving phases. 

These interactions enhance the ability to control and improve separation. Numerous 

column packings (stationary phases), solutions (moving phases), and detectors are 

available in LC, which allow a wider variation of selective interactions and greater 

possibilities for separation. Also, separated fractions can be easily collected. Recovery 

is quantitative and separated sample components are readily isolated for identification 

by supplementary techniques or other use. High performance liquid chromatography 

(HPLC) refers to the use of high-pressure pumps to establish a controlled, rapid solvent 

flow which results in more reproducible operation and, therefore, greater accuracy and 

precision (1).

Gastrointestinal mucosal cells are highly metabolically active and, therefore, 

require large quantities o f adenosine triphosphate (ATP) for maintenance of normal 

cellular function (2). Because of this, the mucosal layer is principally affected during 

ischemia (2). One proposed mechanism for the increase in cellular permeability 

observed during ischemia is decreased endogenous production of ATP. In an 

experimental model of ascending colon volvulus in ponies, mucosal ATP content 

diminished 92% during ischemia and recovered to only 44% of control values upon
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reperfusion (3'. In cultured renal and intestinal epithelial cell lines, decreasing cellular 

ATP content by inducing chemical hypoxia results in rapid opening of tight junctions, 

which increases paracellular permeability (4,5). Therefore, mucosal ATP depletion, 

which occurs during gastrointestinal ischemia, may cause rapid opening of tight 

junctions leading to enhanced absorption o f bacteria and endotoxin into the splanchnic 

circulation. These findings suggest that increased metabolic support to ischemically 

injured colonic epithelium may be important in decreasing morbidity and improving 

survival (3). Quantitation of adenine nucleotide content in equine colonic mucosal 

tissue, using HPLC analysis, will provide information regarding the relationship 

between ATP content, and its catabolites adenosine diphosphate (ADP) and adenosine 

monophosphate (AMP), and alterations in epithelial cell permeability that occur during 

ischemia. Furthermore, potentially increasing adenine nucleotide content in mucosal 

tissue using pharmacologic agents (ie. ATP-MgCl^ to enhance mucosal cell recovery 

can be determined using this technique.

Tissue levels of ATP, ADP, and AMP have been separated by HPLC in 

numerous species and tissues (6). However, separation and quantitation of adenine 

nucleotides in equine colonic mucosal tissue has not been reported. The purposes of 

this study were to validate an established method for adenine nucleotide separation (6) 

in equine colonic mucosal tissue, to determine the inherent variability in the tissue and 

extraction method, and to determine the stability of ATP, ADP and AMP in the tissue 

across time.
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6.2 Materials and Methods

6.2.1 Animals - The study was approved by the Institutional Animal Care and 

Use Committee of Louisiana State University. Equine colonic mucosal tissue (20 mm x 

300 mm strip) was obtained from one horse euthanatized (sodium pentobarbital, 100 

mg/kg, IV) for reasons unrelated to gastrointestinal tract disease. The tissue was 

harvested from the pelvic flexure region of the ascending colon immediately after 

euthanasia and placed in oxygenated Ringer’s solution and transported to the laboratory. 

Composition of the Ringer’s solution (mM) included: 114 NaCl, 5 KC1,1.25 CaCl2 1.1 

MgCl2, 25 NaHCOj, 0.3 NaH2P04 and 1.65 Na,HP04. The mucosa was separated from 

the submucosa in oxygenated Ringer’s solution and divided into multiple parents 

sections. The sections were placed in cryotubes, immediately submersed in liquid 

nitrogen until frozen and then stored at -70 °C overnight.

6.2.2 Adenine nucleotide quantitation - Twenty four hours after collection, the 

frozen samples were lyophilized* (freeze-dried) and stored in a desiccator at -70 C until 

analyzed. The extraction method used in this study was adapted from a technique 

described by Wynants and colleague (6). On the day of analysis, frozen tissue samples 

were weighed (7-13 mg dry weight) and placed in individual 10-ml conical tubes on ice. 

Iced cold perchloric acid (1 ml o f 0.6 N HCL04 /1.5 mg of tissue dry weight) was added 

to each sample, and the samples were homogenized, using a tissumizerb. The samples 

were centrifuged at 2,500 rpm (1,500 x g) at -10 C for 12 minutes. The tissue extracts 

(supernatant) were removed and 1,200 pL was placed in individual 5-ml conical tubes 

on ice. The samples were neutralized with 800 jiL of iced cold potassium bicarbonate 

(1.0 M) and then centrifuged at 2,000 rpm (1,000 x g) at -10 C for 15 minutes.
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Neutralized samples were filtered through a nylon filter* (0.45 urn), and the ATP, ADP 

and AMP were separated by HPLC, using an Alltech Adsorbosphere C18 5 um column"*. 

The column was eluted by gradient, using 0.15M ammonium phosphate and 

methanol/acetonitrile (50:50), at a gradient of 100% to 93% of ammonium phosphate 

over 10 minutes. Detection was performed by a diode-array detector* set at a peak 

wavelength of 260 nm. The run time for each sample was 10 minutes with a 5 minute 

post-run period. The peaks were quantified by area under the curve and compared with 

peak areas of known standards of ATP, ADP and AMP. The limit of quantitation on the 

column was 0.05 |lg/ml.

6.2 J  Instrument Variability (Phase I) - One tissue sample from one parent 

segment was processed for adenine nucleotide quantitation, using the above described 

technique. The single sample was loaded into the instrument and quantified 18 

consecutive times to determine the inherent variability of the instrument.

6.2.4 Sample/Method Variability (Phase II) - Six individual small samples 

were obtained from one parent segment and processed individually for adenine 

nucleotide quantitation, using the above described technique. The samples were 

analyzed in duplicate to determine the variation inherent in the sample preparation and 

extraction method.

6.2.5 Tissue Storage Stability (Phase HI) - Multiple parent segment of tissue 

were crushed, using a chilled mortar and pestle, and combined to improve the 

homogeneity of the individual samples. Three samples of ground tissue were analyzed 

in duplicate for adenine nucleotide content, using the above described technique. The 

analyses were performed at time 0 (2 days after collection; I day after lyophilization)
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and again at time 7,14,21,32,35,46, and 54 (days after the initial adenine nucleotide 

quantitation) to determine stability of adenine nucleotides in lyophilized tissue across 

time.

6.2.6 Statistical Analyses - The variability inherent to the HPLC analysis of 

ATP, ADP and AMP on a single sample run 18 times was summarized as the coefficient 

of variation (CV). The effect of sample and analysis run on the measurement of ATP, 

ADP and AMP was analyzed using a fixed effect, two factorial general linear model. 

Additionally, the inter-run coefficient of agreement was calculated. Thie effect of time 

on ATP, ADP and AMP stability was analyzed, using a fixed effect, general linear 

model accounting for the repeated measurements across time. Initial analysis accounted 

for the effect of time, tissue and run. For ATP and ADP, there was no effect of run and 

the data for each run was combined and re-analyzed with each run considered a 

replicate. Comparisons were made to baseline (time 0) using Dunnett’s test for multiple 

comparison maintaining an experiment-wise type I error of 0.05. For AMP, 

comparisons were made to time 7 since there were only two measurements at time 0.

For all analyses, a p £ 0.05 was considered significant. A statistical software packagef 

was used for the analyses.

63  Results

The CV for the instrument was 5.89% for ATP, 7.68% for ADP and 9.73% for 

AMP. For sample/method variability, there was a significant effect of tissue sample 

(p=0.001) for ATP, ADP and AMP and a significant effect of run (p=0.034) for AMP. 

The inter-run coefficient o f agreement (Pearson’s p) was 0.99 for ATP and ADP and

0.98 for AMP. For the tissue storage stability, there was no significant effect of tissue
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or time for ATP and ADP. However, there was a significant effect of time (p=0.0135), 

but not tissue, for AMP (Fig. 6.1).

6.4 Discussion

The CV for the instrument used in this study was less than 10% for all 

nucleotides measured. The greatest variation during Phase I occurred in AMP 

quantitation and this was associated with diminished resolution of the AMP peak. 

Resolution relates to the relative separation of molecules and can affect the accuracy of 

band area measurement (1). Minor differences in band area measurement could account 

for the higher CV for AMP observed in this study. Another factor that can affect CV is 

the stability of the extracted nucleotides. The total run time for the 18 samples was 285 

minutes. Based on pilot work performed during the validation procedure, no 

appreciable degradation of ATP, ADP and AMP was observed over a 13-hour run time. 

However, in this study we were unable to determine what portion of the CV could be 

attributed to the instrument and what portion, if any, could be attributed to nucleotide 

instability.

The inconsistency in adenine nucleotide content in mucosal samples during 

Phase II of this study was related to the sampling method rather than the extraction 

method. Small samples were broken off from the parent sample after lyophilization and 

then analyzed. Differences in cell type and cell content may exist across the parent 

sample, which could account for the variation observed in this study. For Phase HI the 

parent segments were ground in a chilled mortar prior to analyses to improve 

homogeneity. Results of statistical analyses of Phase m  data revealed that no 

tissue/method effect was present, indicating that we were able to eliminate variability.
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Figure 6.1 - Mean (± SEM) adenine nucleotide content in equine colonic mucosal tissue 
across time. * Significant difference (p £ O.OS) from day 7.
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Based on these results, we believe the variability in our data was a result of tissue 

variability and not extraction method variability. Currently, the authors recommend that 

each frozen sample be ground prior to lyophilization. Another option to minimize the 

variability in the data, although less favorable, would be to increase the number of 

replicates analyzed. The results of this study indicate that a minimum of 100 replicates 

would be required.

Increases in retention time (RT) for AMP occurred during the analyses. Reasons 

for generalized increases in RT include: low mobile-phase flow rate; low column 

temperature; improper gradient setting; and increased column activity resulting in the 

system not being equilibrated (1). However, AMP was the only nucleotide affected in 

this study. During the analysis, material from the extracted samples accumulates at the 

head of the column. As the number of samples analyzed increases, the quantity of 

accumulated material subsequently increases. Binding of AMP to the material may 

delay its release from the column since the solubility of the AMP alone is not the same 

as the solubility of bound AMP. This could result in an increase in RT. In this study, 

the majority of RT problems were observed toward the middle to end of a run, which 

would allow sufficient time for material to accumulate on the column and bind AMP.

In an attempt to decrease the amount of material at the head of the column, a pre-filter 

and guard cartridge were utilized in this study. The authors recommend that the 

maximum number of samples analyzed in one run be limited to 12 in order to maintain 

good resolution of the adenine nucleotide peaks.

The resolution of the chromatogram was excellent for the ATP and ADP, 

however, diminished resolution of the AMP peak was observed across time. As stated
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previously, binding of AMP to material on the head of the column can affect resolution 

quality. Another factor that can contribute to poor resolution is the age of the column. 

In this study, the column used contained silica. The silica bonds can break down across 

time and form free silica hydroxyl groups. These groups can interact with the molecule 

of interest resulting in chromatographic peaks that demonstrate poor resolution. Finally, 

the mobile phase used in this study contained extremely high concentrations of salts 

which accumulate on the column and can affect resolution. The authors recommend 

that the column be washed thoroughly with water (forward and reverse wash) between 

runs to prevent accumulation of salts which can lead to damage to the column and 

instrument.

In conclusion, quantitation of adenine nucleotide content in equine colonic 

mucosal tissue, using HPLC, provided reproducible results when the tissue was ground 

into a homogeneous sample. The stability of the adenine nucleotides measured in this 

study following lyophilization within 24 hours of sample collection and stored in a 

desiccator at >70 °C was greater than 30 days. The extraction method was simple and 

required minimal equipment to accomplish (refrigerated centrifuge and a tissumizer). 

The RT for the 3 nucleotides analyzed in this study was under 10 minutes, which allows 

analysis of multiple samples in one run.

6.5 Product Information

‘FreeZone 4.5 liter freeze dry system, Model 77510, Labconco Corporation, Kansas 
City, MO

‘TJltra-turrax T25, Tekmar Corporation, Cincinnati, OH

cNalgene 4-mm syringe filters #176-0045, Nalge Company, Rochester, NY
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dAbsorbosphere C l8 5U column, Direct-connect prefilter kit #28689, All-guard 
cartridge system #96041, Alltech Associates, Deerfield, IL

eHP 1090 liquid chromatograph, Agilent Technologies, Wilmington, DE

TROC MEANS, PROC GLM, PROC REG, SAS version 6.12, SAS Institute, Cary, NC
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CHAPTER 7. IN VITRO DEPLETION OF ADENINE 
NUCLEOTIDES IN EQUINE COLONIC MUCOSAL TISSUE 
AFTER EXPOSURE TO AN ELECTRON TRANSPORT 
INHIBITOR
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7.1 Introduction

Because gastrointestinal mucosal cells are highly active metabolicallyand require 

large quantities of ATP for maintenance of normal cellular function, the mucosal layer 

is principally affected during ischemia (1). Increased cellular permeability, which 

occurs during ischemia and hypoxia, leads to translocation of bacteria and endotoxin 

from the gastrointestinal tract lumen into the splanchnic and systemic circulation. One 

mechanism that may be involved in the increase in gastrointestinal mucosal 

permeability during ischemia is decreased endogenous synthesis of ATP.

The epithelial intercellular permeability barrier is maintained largely by the tight 

junction (TJ) (2). Tight junctions are continuous, circumferential, intercellular contacts 

between epithelial cells, which are responsible for generating and maintaining a passive 

permeability barrier that regulates paracellular solute flow (3). In vitro studies have 

demonstrated that a correlation exists between cellular ATP content and TJ integrity (4). 

When cells in culture are experimentally depleted of ATP, disruption of signaling 

processes occurs resulting in paracellular barrier dysfunction (4). During ischemia and 

subsequent reoxygenation, several lesions occur in epithelial cells including 

mispolarization of some membrane proteins, perturbation of the actin cytoskeleton and 

disruption of the permeability barrier (5,6). These lesions can be reproduced in cell 

culture models for hypoxia-reoxygenation injury, using agents that deplete cellular ATP 

(4).

Several reversible in vitro models which produce chemical hypoxia or oxygen 

deprivation have been developed to deplete cellular ATP content. Chemical hypoxia 

can be induced with antimycin A (AA, oxidative inhibitor) (4), sodium cyanide (7), or a
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combination o f AA plus 2-deoxy-glucose (glycolytic inhibitor) (2). Oxygen deprivation 

can be induced by replacing oxygen with nitrogen gas (8). One of the most widely 

utilized methods to produce chemical hypoxia with subsequent ATP depletion is AA. 

Antimycin A interferes with electron flow from cytochrome bn in cytochrome reductase, 

thereby inhibiting the electron transport chain and ATP synthesis (9).

Ascending colon volvulus is a common cause of gastrointestinal tract ischemia 

in horses (10). In an experimental model of ascending colon volvulus in ponies, 

mucosal ATP content was found to diminish 92% after ischemia and recovered to only 

44% of control values upon reperfusion (11). The depletion of mucosal ATP content 

may lead to rapid opening of TJs and increased passage of bacteria and endotoxin 

through the paracellular pathway and into the splanchnic circulation. Early 

reestablishment of cellular ATP content following an intestinal ischemic event may help 

minimize mucosal barrier disruption with subsequent passage of toxic mediators into 

the splanchnic circulation, thereby decreasing morbidity and mortality.

Based on this information, we hypothesized that AA would deplete equine 

colonic mucosal adenine nucleotide content and upon its removal, adenine nucleotides 

would be repleted. The purposes of this study were to evaluate the effect of AA on 

equine colonic mucosal adenine nucleotide content, and secondly, to determine the 

stability of adenine nucleotides in an in vitro system. The development of an in vitro 

reversible model of ATP depletion for equine colonic mucosal tissue will enable 

investigators to characterize the role of ATP in maintenance of cellular integrity. 

Additionally, methods to modulate TJ integrity during adenine nucleotide depletion can 

be evaluated.
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72  Materials and Methods

7.2.1 Animals - The study was approved by the Institutional Animal Care and 

Use Committee of Louisiana State University. Six horses euthanatized for reasons 

unrelated to gastrointestinal tract disease were used. Immediately following euthanasia 

(pentobarbital sodium*, 100 mg/kg, IV), a full-thickness tissue segment was collected 

from the pelvic flexure region of the left ventral colon. The tissue was rinsed of 

intestinal contents, using 0.9% NaCl, and transported to the laboratory in preoxygenated 

(95% 0 2-5% CO^, chilled Ringer’s solution. Composition of the Ringer’s solution 

(mM) was: 114 NaCl, 5 KC1,1.25 CaCl2, 1.1 MgCl2, 25 NaHC03, 0.3 NaH2P04 and 

1.65 Na2HP04. The tissue was pinned on a rubber surface, with mucosal side up, and 

submerged in oxygenated (95% 0 2-5% COj) Ringer’s solution at room temperature (20- 

22 °C). Mucosal segments (6 mm x 6 mm) were harvested and placed in organ baths. 

The segments were bathed in oxygenated (95% 0 2-5% COj) Ringer’s solution at a 

volume of 10 ml and temperature of 37 °C.

7.2.2 Experimental Design - Four different organ bath conditions were used 

(Table 7.1). All tissues were allowed an equilibration period of 15 minutes in the organ 

bath prior to collection of the baseline (t= 0) sample. The remainder of the samples 

were collected at 60,120,180 and 240 minutes after the baseline samples were 

obtained. Baths 1 through 4 contained Ringer’s solution with 10 mM glucoseb (SCRS). 

Baths 5 through 8 contained Ringer’s solution with no glucose added (SFRS). Baths 

9-12 contained Ringer’s solution with no glucose added. After obtaining the baseline 

sample, antimycin Ac (50 pM) was added to the bath solution (AA/D). Baths 13
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Table 7.1 - Organ bath/tissue design. Segments (6 mm x 6 mm) of equine colonic 
mucosal tissue were placed in individual organ baths and bathed in oxygenated (95% 
0 2-5% COj) Ringer’s solutions with the following treatments added at time = 0 
minutes: SCRS - substrate-containing (10 mM glucose) Ringer’s solution; SFRS - 
substrate-free Ringer’s solution; AA/D - 50 JIM antimycin A (AA) in SFRS; AA/R - 
AA removed and replaced with SCRS only; Frozen - tissue removed from organ bath 
and snap frozen in liquid nitrogen; NT - no tissue in organ bath.

Organ Bath Omin 60 min 120 min 180 min 240 min

1 SCRS Frozen NT NT NT

2 SCRS SCRS Frozen NT NT

3 SCRS SCRS SCRS Frozen NT

4 SCRS SCRS SCRS SCRS Frozen

5 SFRS Frozen NT NT NT

6 SFRS SFRS Frozen NT NT

7 SFRS SFRS SFRS Frozen NT

8 SFRS SFRS SFRS SFRS Frozen

9 AA/D Frozen NT NT NT

10 AA/D AA/D Frozen NT NT

11 AA/D AA/D AA/D Frozen NT

12 AA/D AA/D AA/D AA/D Frozen

13 AA/D AA/R Frozen NT NT

14 AA/D AA/R AA/R Frozen NT

15 AA/D AA/R AA/R AA/R Frozen
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through 15 contained Ringer’s solution with no glucose initially (SFRS). After 

collection of the baseline sample, 50 pM AA was added (AA/D). After the 60-minute 

sample collection, the Ringer’s/AA solution was removed and replaced with Ringer’s 

solution and 10 mM glucose (AA/R).

7.2.3 Adenine nucleotide quantitation - At the appropriate time periods, 

tissues were removed from the baths, snap frozen in liquid nitrogen and stored in 

cryotubes at -70 C until lyophilized. Within 3 days of collection, the samples were 

lyophilizedd and stored in a dessicator at -70 °C prior to high performance liquid 

chromatography (HPLC) analysis, which was performed within 10 days of sample 

collection. The method for adenine nucleotide quantitation in equine colonic mucosal 

tissue using HPLC has been described (12). Briefly, frozen lyophilized tissues were 

weighed (7-13 mg) and placed in individual conical tubes on ice. Ice-cold perchloric 

acid (I ml of 0.6 N HCL04/1.5 mg of tissue dry weight) was added to each sample, and 

the sample tissues were homogenized, using a tissumizer6. Subsequently, the samples 

were centrifuged (1,500 x g) at -10 °C for 12 minutes, the supernatant removed, and 

1,200 pL of the supernatant placed in individual conical tubes on ice. After neutralizing 

the samples with 800 pL of ice-cold potassium bicarbonate (1.0 M), they were 

centrifuged (1,000 x g) at -10 °C for 15 minutes. Neutralized samples were filtered 

(0.45 pm nylon filter*) and the ATP, ADP and AMP were separated by HPLC, using an 

Alltech Absorbosphere C l8 5pm column8. The column was eluted by gradient, using

0.15M ammonium phosphate and methanol/acetonitrile (50:50), at a gradient of 100% 

to 93% of ammonium phosphate over 10 minutes. Detection was performed by a diode- 

array detector11 set at a peak wavelength o f260 nm. The peaks were quantified by area
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under the curve and compared with peak areas of known standards of ATP, ADP and 

AMP.

7.2.4 Statistical Analyses - The study was considered a completely randomized 

block design, blocked by tissue, with replication of each Treatment (n=2) within each 

block. All continuous data were evaluated for normality, using the Shapiro-Wilk 

statistic and considered to follow a normal distribution with failure to reject the null 

hypothesis of normality at p £ 0.05. Non-normal data were transformed. The data were 

summarized and graphed as mean ± SEM.

The data were evaluated using a mixed effect, general linear model accounting 

for the random variance of Horse and repeated measurements on each horse. A two- 

sided hypothesis with a  = 0.05 was used to determine significance of the fixed effects. 

Where there were significant fixed effects, including interactions, selected adjusted least 

squares means comparisons maintaining an experiment-wise error of a = 0.05 were 

made within treatments to describe the changes over time. Thus, where a difference was 

noted, the p-value was £ 0.05. Treatments that behaved differently over time were 

implied to be different SAS version 8.01 was used for the analyses.

73  Results

7.3.1 SCRS Group - There were no statistically significant differences in ATP 

content across time compared with the baseline (t=0) value. There were significant 

decreases in ADP and AMP content at 60-240 minutes and 120-240 minutes, 

respectively (Figure 7.1 A).

73.2 SFRS Group - Both ATP and ADP significantly decreased across time. 

ATP content significantly decreased at 240 minutes and ADP was significantly
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decreased at 60-240 minutes, compared with baseline values. There were no changes 

in AMP content across time (Figure 7.1B).

733  AA/D Group - Significant decreases in adenine nucleotides were observed 

in tissues exposed to 50 pM AA. Compared with baseline values, ATP and ADP were 

significantly decreased at 60-240 minutes and 120-240 minutes, respectively. There 

was an initial significant increase in AMP content at 60 and 120 minutes, which was 

followed by a significant decrease at 240 minutes (Figure 7.2 A). When compared to 60 

minute values, 120,180 and 240-minute ATP, ADP and AMP concentrations were 

significantly decreased.

7.3.4 AA/D-AA/R Group - Adenine nucleotide content followed a similar 

pattern as AA/D. However, no significant decrease in AMP was observed at 240 

minutes (Figure 7.2 B). When compared with the 60 minute value, ATP concentrations 

at 120,180 and 240 minutes were not significantly different. However, ADP and AMP 

followed a pattern similar to the AA/D group.

7.4 Discussion

In the presence of glucose and oxygen, equine colonic mucosal ATP content was 

stable in vitro for up to 4 hours. However, both ADP and AMP decreased. When 

glucose was not present, ATP content remained stable for only 3 hours. Addition of AA 

(50 |lM ) caused a time-dependent decrease in adenine nucleotide content. Removal of 

AA-containing Ringer’s solution with subsequent solution replacement and addition of 

glucose prevented further depletion of ATP. However, unlike cell culture systems in 

which ATP is repleted upon removal of AA and addition of substrate (4), we did not 

observe ATP repletion in our whole tissue model.
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Figure 7.1 (A and B) - Mean (±SEM) ATP, ADP and AMP content in equine colonic 
mucosal tissue. SCRS - substrate-containing (10 mM glucose) Ringer’s solution; SFRS 
- substrate-free Ringer’s solution. * denotes significant difference from time 0. 
p £ 0.05 considered significant.
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Figure 7.2 (A and B) - Mean (±SEM) ATP, ADP and AMP content in equine colonic 
mucosal tissue. AA/D - 50 (iM antimycin A (AA) in SFRS; AA/D-AA/R - 50 JlM AA 
in SFRS for 60 minutes followed by removal of AA and replacement with SCRS.
AA/D group: Significantly different from time 0 - ATP (60-240 min); ADP (120-240 
min); AMP (60,120, and 240 min). Significantly different from time 60 - ATP, ADP, 
and AMP (120-240 min).
AA/D-AA/R group: Significantly different from time 0 - ATP (60-240 min); ADP (120- 
240); AMP (60 and 120 min). Significantly different from time 60 - ADP and AMP 
(120-240 min).
p £ 0.05 considered significant.
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The intestinal epithelial tight junction restricts the paracellular permeation of 

ions and nonelectrolyte substances (13). In one study using chemical hypoxia to deplete 

ATP in cultured human intestinal epithelial cells, transepithelial resistance to passive 

ion flow rapidly decreased, and the effect was reversible if control conditions were 

restored within 1 hour (14). The decrease in resistance was demonstrated to be due to 

an increase in paracellular, not transcellular, permeability (14). Clinically, ATP 

depletion secondary to gastrointestinal tract ischemia may increase paracellular 

permeability, leading to passage of bacteria and endotoxin into the systemic circulation. 

Development of an in vitro reversible model of ATP depletion in equine gastrointestinal 

mucosal tissue would enable investigators to characterize the role of ATP and other 

adenine nucleotides in the regulation of paracellular permeability. Additionally, 

potential therapies aimed toward increasing cellular ATP content to maintain TJ, as well 

as cellular, integrity can be evaluated.

The reason(s) for the lack of reversibility of ATP depletion in our whole tissue 

model, compared with cell culture systems, is unknown, but several possibilities exist. 

First, the binding of AA to the tissue may be irreversible. Second, the cells may not be 

able to take up and utilize the glucose that was added to the in vitro system following 

removal of AA. Third, additional nutrients which were not present in the electrolyte 

solution that we used, but are present in cell culture medium, may be required for cells 

to synthesize ATP. Finally, tissues contain large quantities of ectonucleotidases, which 

degrade adenine nucleotides (15). The mucosal cells may have regenerated ATP, but 

the ATP may have escaped into the extracellular environment, subjecting it to
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enzymatic degradation to a form (ie. adenosine, inosine, hypoxanthine) which was not 

measured in this study.

In conclusion; equine colonic mucosal ATP content appears to be stable in an in 

vitro system for a minimum of 3 hours in the presence or absence of substrate. Addition 

o f an electron transport inhibitor markedly decreased ATP content. However, the 

depletion of ATP in our whole tissue model was not reversible. Additional studies 

using other mitochondrial (and glycolytic) inhibitors and different substrates need to be 

performed to determine whether a whole tissue in vitro model of reversible ATP 

depletion can be developed.

7.5 Product Information

“Beuthanasia, Schering-Plough Animal Health Corp., Union, NJ. 

b G8270, Sigma-Aldrich Inc., S t Louis, Mo.

CA8674, Sigma-Aldrich Inc., St. Louis, Mo.

dFreeZone 4.5 liter freeze dry system, Model 77510, Labconco Corporation, Kansas 
City, MO

EUltra-turrax T25, Tekmar Corp., Cincinnati, Ohio.

'Nalgene 4-mm syringe filters #176-0045, Nalge Company, Rochester, NY.

“Absorbosphere C l8 5U column, Direct-connect prefilter kit #28689, All-guard 
cartridge system #96041, Alltech Associates, Deerfield, EL.

hHP 1090 liquid chromatograph, Agilent Technologies, Wilmington, DE.

‘SAS version 8.0, SAS Institute, Cary, NC.
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SUMMARY

Intravenous infusion of a combination of ATP and MgCI2 to clinically normal, 

conscious, adult horses significantly increased CO (0.35 to 0.8 mg of ATP/kg of body 

weight/min), decreased MAP and SRlCO.35 to 1.0 mg/kg/min), and caused mild 

pulmonary hypertension (0.15,0.3, and 0.4 to 0.9 mg/kg/min) without a significant 

change in PRL Magnitude of the hemodynamic alterations was dependent on the rate of 

infusion. The maximal safe infusion rate was 0.3 mg/kgt/min. All horses became 

lethargic, and their appetities diminished at infusion rates £ 0.4 mg/kg/min. Five of 6 

horses exhibited signs of mild abdominal discomfort at infusion rates > 0.7 mg/kg/min. 

Flank sweating was observed in all horses at rates £ 0.45 mg/kg/min. Urine volume 

and specific gravity and hematologic, biochemical, and arterial blood gas alterations 

were detected during and after the infusion. The various hemodynamic and metabolic 

alterations were without appreciable detrimental effects at rates of infusion ranging from 

0.05 to 1.0 mg/kg/min.

In clinically normal, anesthetized, adult horses administered IV ATP-MgCl2 (0.1 

to 1.0 mg/kg/min), systemic and colonic vascular resistance decreased in a rate- 

dependent manner. The decrease observed was principally via vasodilatation. A rate of 

0.3 mg/kg/min caused a significant decrease in systemic and colonic arterial pressure 

and colonic vascular resistance without a signfkant corresponding decrease in colonic 

arterial blood flow. No consistent signfrcant alterations in plasma colonic NO 

concentrations were observed, despite profound vasodilatation of the colonic arterial 

vasculature. The results suggest that IV infusion of ATP-MgCl2 combination to horses
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with gastrointestinal tract ischemia may be beneficial in maintaining colonic perfusion if 

driving pressure is maintained above a critical level.

In clinically normal, conscious, adult horses, IVATP-MgCl2(dose - 100 pmole 

ATP/kg and 100 pinole MgCij/kg; rate - 0.3 mg/kg/min) after low-dose (35 ng/kg) 

endotoxin administration failed to attenuate the clinical, hemodynamic, metabolic and 

hematologic alterations that occur secondary to endotoxin exposure. The combination 

of endotoxin and ATP-MgCl2 appeared to potentiate the pulmonary hypertension, 

leukopenia, and neutropenia that occurred when endotoxin was given alone. Finally, 

endotoxin and ATP-MgCl2 combination led to thrombocytopenia.

In isolated colonic arterial and venous rings collected from clinically normal 

horses, exogenous ATP caused a concentration-dependent relaxation response. At 

higher concentrations of ATP (10*6 tp 10'3 M), the vascular response to ATP was 

biphasic, with an initial, rapid and transient contraction followed by relaxation. 

Significant relaxation was detected at 10"4 M and I O'3 M. Removal of endothelium 

attenutated but did not eliminate the relaxation response in both arteries and veins. The 

mean maximum percentage attenuation of the relaxation response for endo - arteries and 

veins was 45.17% and 30.31 %, respectively. The contribution of nitric oxide to the 

relaxation response was minimal and appeared to be more appreciable in veins. The L- 

NAME study paralleled our in vivo colon study, where no significant increases in either 

plasma colonic arterial or venous nitric oxide concentrations were detected despite the 

presence of profound vasodilatation of the colonic vasculature. The mechanism of 

action of the endothelium-dependent component of the relaxation response to ATP may 

involve PGI2 or EDHF. However, nitric oxide cannot be definitely ruled-out. The ATP
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used was not stable and, therefore, was subject to degradation to other adenine 

nucleotides (ie. adenosine), which would activate different mechanisms to cause 

endothelium-dependent vasodilatation.

We validated an established method for adenine nucleotide separation for use on 

equine colonic mucosal tissue utilizing HPLC. The limit of quantitation was 0.05 

pg/ml. The method provided reproducible results when the tissues were ground into a 

homogenous samples prior to extraction. No significant decreases in adenine 

nucleotides were observed for at least 54-days when samples were lyophilized within 

24 hours of collection and stored in a dessicator at -70 °C.

Finally, we evaluated the stability of adenine nucleotides in equine colonic 

mucosal tissue in vitro and a potential reversible model of adenine nucleotide depletion 

in a whole tissue model. In the presence of glucose and oxygen, ATP was stable for £ 4 

hrs. However, both ADP and AMP decreased. When glucose was absent, ATP 

remained stable for £ 3 hrs. Addition of 50 pM antimycin A (electron transport 

inhibitor) caused a time-dependent decrease in adenine nucleotide content. Removal of 

antimycin A and addition of substrate prevented further depletion of ATP. However, 

adenine nucleotide repletion was not observed in our whole tissue model.
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